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ABSTRACT

Reliable copyright protection for 3D assets requires watermark ver-
ification across arbitrary viewpoints. However, existing evaluations
rely on dataset splits or ad-hoc camera samplings that overlook fail-
ure cases. We introduce Multi-Shell Viewpoint Sampling (MSVS),
which ensures uniform, distance-aware coverage via concentric,
visibility-bounded shells and spherical sampling. MSVS reveals
substantially lower bit accuracy even on high-quality renderings that
an adversary would prefer. Motivated by the failure cases exposed
by MSVS, we further propose a greedy subsampling strategy that
selects training views guided by a locality-aware kernel. For 3D-
GSW, greedy subsampling improves MSVS bit accuracy by +0.020
on the Blender dataset and +0.056 on the Stanford-ORB dataset
over random selection, and the gains persist under common image
attacks. MSVS establishes a comprehensive benchmark for 3D wa-
termark evaluation, while greedy subsampling provides an efficient
strategy to enhance watermark protection. 1

Index Terms— Gaussian Splatting, Digital Watermarking,
Copyright Protection, Novel View Synthesis, Spherical Sampling

1. INTRODUCTION

Creating high-quality 3D assets is essential across applications and
industries, including games, film, autonomous driving, and the
Metaverse. However, the process has historically required sub-
stantial time and specialized expertise. Recent advances in novel
view synthesis, such as Neural Radiance Fields (NeRF) [1], 3D
Gaussian Splatting (3DGS) [2], and their extensions [3, 4, 5], have
begun to lower this barrier. As these techniques mature, sharing
user-generated 3D assets online may soon be as effortless as shar-
ing videos, images, or audio. As sharing scales, mechanisms are
needed to ensure attribution and preserve creators’ incentives, since
3D assets can be re-rendered and repurposed across scenes, making
uncredited reuse easy and obscuring provenance.

To detect unauthorized use of 3D assets, recent work combines
neural-rendering-based generation with digital watermarking [6, 7,
8, 9, 10, 11, 12, 13]. These methods embed a payload with mini-
mal impact on rendering quality while enabling robust recovery un-
der common attacks (compression, noise, cropping, etc.). Payloads
range from images [11] and bit strings [6, 7, 9, 10] to videos [12];
performance for bit strings is typically reported as bit accuracy with
task-specific decoders such as HiDDeN [14] and MBRS [15].

However, there is no standardized protocol for selecting camera
viewpoints when evaluating bit accuracy. For example, 3D-GSW
[6], WateRF [8], and GaussianMarker [9] use the official train/test
split on the Blender dataset [1], whereas on mip-NeRF360 [16] they

1Project page: https://tomoya-matsubara.github.io/we3/

(a) Blender [1] (b) GuardSplat [7]

Fig. 1. Camera viewpoints in the training set (blue) and test
set (orange). GuardSplat cameras are generated using the offi-
cial implementation’s default parameters: r = 4.031128874, θ ∈
[−180◦, 180◦], ϕ = −30◦ (spherical coordinates; r radius, θ az-
imuth, ϕ elevation).
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Fig. 2. Overview of the Multi-Shell Viewpoint Sampling (MSVS).

form the test set by subsampling every eighth image. Both proto-
cols stem from dataset conventions intended to assess novel-view
rendering quality rather than to comprehensively cover the view-
point space. By contrast, GuardSplat [7] places cameras at spherical
coordinates where radius and elevation are drawn at random from
specified ranges, and azimuth is evenly spaced. Neither strategy
covers the viewpoint space comprehensively, as shown in Figure 1.
However, this is not a valid evaluation of 3D watermarking meth-
ods, which in principle requires high bit accuracy across all view-
points. Since attackers can render from arbitrary viewpoints, such
blind spots directly undermine copyright protection.

To reduce such blind spots in performance evaluation, we in-
troduce Multi-Shell Viewpoint Sampling (MSVS), a protocol for
bit accuracy evaluation that addresses the lack of comprehensive
viewpoint coverage. MSVS implements this by placing concentric,
visibility-bounded shells around the object and sampling viewpoints
on each shell via spherical sampling [17], as shown in Figure 2. By
construction, MSVS provides near-uniform, distance-aware cover-
age and avoids overlooking viewpoint-dependent failures. In our
experiments, bit accuracy on MSVS-sampled viewpoints is consis-
tently and substantially lower than on the dataset-provided test views
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common in prior work, underscoring the importance of comprehen-
sive viewpoint coverage. Motivated by this finding, we also propose
a simple yet effective greedy subsampling strategy that augments
the training set to improve watermark coverage. We model the gain
from adding a training viewpoint with a nondecreasing kernel over
evaluation views, and greedily select viewpoints that maximize an
objective defined based on the sum of bit accuracies across evalua-
tion cameras. Empirically, this method yields higher bit accuracy on
MSVS generated test sets than a random subsampling baseline. Our
main contributions are summarized as follows:

• MSVS: a comprehensive evaluation protocol. We intro-
duce Multi-Shell Viewpoint Sampling (MSVS), which uses
concentric spherical shells with visibility-bounded radii and
stratified spherical sampling to ensure uniform, distance-
aware coverage of viewpoints for evaluating 3D watermark-
ing on 3D assets.

• Greedy training-view selection. We propose a simple
greedy subsampling strategy that models the benefit of adding
a training viewpoint with a nondecreasing kernel over evalu-
ation cameras, efficiently selecting views that maximize the
summed bit accuracy.

• Comprehensive empirical analysis. Across diverse as-
sets and watermarking methods, MSVS reveals substantially
lower bit accuracy than dataset-provided test viewpoints, sur-
facing failure modes that standard protocols miss; our greedy
subsampling consistently improves MSVS test accuracy over
a random baseline.

2. MULTI-SHELL VIEWPOINT SAMPLING

In this section we present an evaluation protocol for measuring bit
accuracy in watermarked scenes that contain a single 3D object cen-
tered at the origin. Ideally, bit accuracy would be evaluated over the
entire space of viewpoints. This is infeasible because the space of
viewpoints is continuous. A sampling strategy is therefore required
to provide sufficient spatial coverage with a practical number of eval-
uations. We introduce Multi-Shell Viewpoint Sampling (MSVS),
which respects object visibility constraints and samples viewpoints
on a set of concentric spheres centered at the object.

2.1. Single Shell Viewpoint Sampling

We begin with sampling on the surface of a single shell, that is, a
sphere with fixed radius R. Intuitively, viewpoints that are very close
to each other should yield similar bit accuracy. Accordingly, we as-
sume bit accuracy is approximately constant within distance rs of
a viewpoint. We use rs as the minimum pairwise separation during
sampling and refer to rs as the separation radius. This hyperparame-
ter controls sampling density: a smaller rs produces denser coverage
and stricter evaluation, at the cost of increased computation.

Given the separation radius rs, each sampled viewpoint induces
a spherical cap consisting of points on the sphere that lie within Eu-
clidean distance rs, as illustrated in Figure 3 (a). Since the surface
area of this spherical cap equals πr2s and the sphere has area 4πR2,
the minimum number of points N required to cover the sphere with
radius R satisfies N ≥ ⌈ 4πR2

πr2s
⌉ = ⌈4( R

rs
)2⌉. Equality would re-

quire a partition with no overlap or gaps, which is not achievable in
general. In practice, we therefore set N = ⌈α · 4(R/rs)

2⌉, where
α ≥ 1 is an efficiency factor that accounts for overlap and boundary
effects. After fixing N , we distribute the viewpoints on the sphere
using the spherical Fibonacci lattice [17].
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Fig. 3. Illustration of (a) the spherical cap created by a single view-
point and (b) the radial step between two shells.

2.2. Extension to Multi-Shell

By repeating single shell viewpoint sampling over multiple radii, the
3D viewing domain can be covered more comprehensively. How-
ever, if the admissible radius range is left unbounded, the number
of sampled viewpoints can become prohibitively large. We there-
fore constrain the radius range using the target object’s visibility in
rendered images.

First, we define the lower bound on the radius (the radius of the
innermost shell) as Rmin = maxp∈P ∥p − c∥, where P denotes
the point cloud of the object and c is its center. This is the radius
of the smallest sphere centered at c that contains the entire point
cloud. Since NeRF and 3DGS can render estimated depth maps once
trained, 3D watermarking methods built on them can construct P by
unprojecting depth pixels into 3D using known camera parameters.

Second, we define the upper bound on the radius by a dataset
specific visibility criterion. We first examine all dataset cameras and
identify the one whose rendering yields the largest projected object
area, measured by the object mask. We then keep this camera’s in-
trinsics and orientation fixed and translate the camera along its view-
ing ray away from the object center. For a placement at distance d,
let vis(d) be the fraction of pixels that belong to the object mask.
Given a threshold τ , we set Rmax = max{d ∈ R+ | vis(d) ≥ τ}.
In practice, a binary search over d yields Rmax, since vis(d) is non-
increasing in d for fixed intrinsics and orientation.

We then sample shell radii uniformly over [Rmin, Rmax]. Given
a separation radius rs, we set the radial step to ∆R = 2rs
as illustrated in Figure 3 (b), which provides radial coverage
commensurate with the assumed spatial smoothness at scale rs.
Thus, Rk = Rmin + k∆R for k = 0, . . . ,K, where K =
⌊(Rmax −Rmin)/∆R⌋, which yields K + 1 radii.

3. GREEDY SUBSAMPLING

Our goal is to increase the number of protected viewpoints, where
the embedded watermark can be reliably recovered. To this end,
we start from an objective that maximizes the average bit accuracy
across the evaluation viewpoints (equivalently the sum, since the set
is fixed) and then use it to guide a greedy subsampling strategy.

3.1. Problem Formulation

In standard machine learning, a strict separation between training
and test data is used to estimate performance on unseen samples. In
3D watermarking, the goal is different; the system must guarantee
high bit accuracy for every possible camera viewpoint in a contin-
uous set V . Practical evaluation uses a finite discretization V ′ of
V , which is, in our case, the viewpoints sampled by MSVS. Train-
ing on V ′ is justified because V ′ is a concrete approximation of the



Table 1. Per-method results, averaged over scenes: bit accuracy on Test (dataset-provided) and MSVS (multi-shell).

Dataset Blender [1] Stanford-ORB [18]

PSNR ↑ SSIM ↑ LPIPS ↓ Bit Accuracy ↑ PSNR ↑ SSIM ↑ LPIPS ↓ Bit Accuracy ↑
Methods Test MSVS Test MSVS

3D-GSW [6] 34.77 0.981 0.023 0.951 0.764 35.75 0.976 0.027 0.996 0.828
+ Random 32.59 0.971 0.032 0.975 0.832 35.51 0.974 0.026 1.000 0.851
+ Greedy (Ours) 32.37 0.970 0.033 0.975 0.852 34.99 0.972 0.029 1.000 0.907

GuardSplat [7] 27.15 0.931 0.054 0.653 0.557 36.19 0.978 0.024 0.665 0.578
+ Random 26.91 0.927 0.058 0.706 0.599 35.31 0.976 0.027 0.711 0.647
+ Greedy (Ours) 26.92 0.927 0.058 0.705 0.601 35.34 0.976 0.027 0.711 0.650

GaussianMarker [9] 27.43 0.922 0.070 0.845 0.652 35.68 0.970 0.038 0.803 0.623
+ Random 27.19 0.917 0.077 0.884 0.686 35.02 0.965 0.043 0.848 0.668
+ Greedy (Ours) 27.20 0.918 0.077 0.882 0.691 35.11 0.966 0.042 0.844 0.669

full viewpoint domain, and evaluation verifies compliance with the
requirement on that domain. This does not constitute data leakage,
since the aim is not to infer behavior on an unknown distribution but
to certify that the requirement holds across the intended operating
domain. That said, training on V ′ is typically impractical because
|V ′| is large. Gradient based optimization makes training cost grow
with |V ′|, whereas evaluation on V ′ only requires forward compu-
tation, which is often affordable. We therefore seek a subset of m
viewpoints from V ′ with which to extend the training set, maximiz-
ing overall bit accuracy on V ′. Formally, we pose

Maximize
S′⊆V ′

∑
x∈V ′

bS0∪S′(x) s.t. |S′| ≤ m, (1)

where S0 is the original training set, and bS0∪S′(x) denotes the bit
accuracy at viewpoint x after training on S := S0 ∪ S′.

3.2. Approximation of Fine-Tuning

A naı̈ve approach would be to repeatedly select the viewpoint in V ′

with the lowest bit accuracy, add it to the training set, and fine-tune
the model, iterating until the update budget m is exhausted. How-
ever, this requires m separate fine-tuning runs, each already highly
expensive (e.g., 84 hours per CopyRNeRF [19] run [7]). Given a
model pre-trained (i.e., watermarked) on the original set, fine-tuning
on the set augmented by a viewpoint s∗ primarily increases bS0(x)
for viewpoints x in a neighborhood of s∗. To avoid fine-tuning at
each subsampling step, we approximate the effect of adding a view-
point s∗ by an improvement factor k that depends only on the dis-
tance to the nearest training viewpoint. Concretely, for any x ∈ V ′,
we model this effect as

bS0∪{s∗}(x) := bS0(x)k

(
min

s∈S0∪{s∗}
d(x, s)

)
(2)

where d(x, s) is the distance between viewpoints x and s, and
k : R+ → [1,∞) is nonincreasing in distance. This surrogate states
that adding s∗ provides a locality based gain that depends only on
the distance to the nearest training viewpoint. Viewpoints near s∗

receive a larger multiplicative improvement, distant views receive
little change, and views already well covered by S0 see negligible
additional gain. This lets us estimate the benefit of adding s∗ without
performing an actual fine-tuning run.

Following Equation 2, each subsampling step selects the next
viewpoint by maximizing

s∗ = arg max
s∈V ′\S

∑
x∈V ′

wS(x)k

(
min

s′∈S∪{s}
d(x, s′)

)
(3)

where wS(x) is a nonnegative weight. With wS(x) = bS(x), the
objective favors viewpoints that already exhibit high bit accuracy.
To emphasize poorly protected viewpoints, we instead set wS(x) =
max{0, 1 − bS(x)}, which downweights already protected views
and shifts the budget toward weak regions.

3.3. Greedy Algorithm for Submodular Optimization

Let f(S) =
∑

x∈V ′ w(x)k (mins∈S d(x, s)) with fixed nonnega-
tive weights w(x) = wS0(x). Then f(S) is nonnegative, mono-
tone, and submodular. Maximizing a monotone submodular func-
tion under a cardinality constraint is NP-hard [20], so we employ a
greedy algorithm, which in each step is equivalent to Equation 3 with
wS(x) replaced by the fixed w(x). By caching mins∈S d(x, s) for
all x ∈ V ′ and updating it incrementally when testing a candidate
s, the greedy algorithm runs in O(m|V ′|2) time. The objective is a
sum over viewpoints, so its evaluation is readily vectorized and can
benefit from GPU acceleration.

4. EXPERIMENTS

4.1. Experimental Setting

MSVS and the greedy subsampling strategy are method-agnostic.
We apply them to 3D-GSW [6], GuardSplat [7], and Gaussian-
Marker [9], selected for their relatively short training times [7]. The
experiments have two stages: (1) embed a 32-bit message into clean
models pre-trained with 3DGS [2] and evaluate bit accuracy on
MSVS; (2) extend the training set with m = 10 MSVS viewpoints
and fine-tune once (baseline: random m = 10). For 3D-GSW and
GaussianMarker we use the official default training configurations;
for GuardSplat 2 we enable a distortion layer with Gaussian blur,
brightness jitter, JPEG compression, cropping, rotation, resizing,
and additive zero-mean Gaussian noise. During fine-tuning, ground
truth for the new viewpoints is rendered by the stage-1 watermarked
models. Unless otherwise noted, we set rs = 0.5, α = 1.1, and
τ = 0.1. We use k(d) = 1+e−(d/d′)2 , where d′, set to 1.5, controls
the decay rate. This kernel is designed so that when a viewpoint is
added to the training set (d = 0), a random baseline of 0.5 becomes
1.0, consistent with the assumption that training drives bit accuracy
at those viewpoints to near 1.0.

Datasets: Blender [1], commonly used for object-centric 3D
watermarking [8, 19, 6, 7, 9]; and real-world Stanford-ORB [18],

2Unlike other methods, GuardSplat has explicit distortion layers.



Table 2. Per-method bit accuracy on MSVS viewpoints under common image attacks, averaged over all scenes in each dataset.

Dataset Blender [1] Stanford-ORB [18]

None Noise JPEG Scaling Blur None Noise JPEG Scaling Blur
Methods (σ = 0.1) (50%) (75%) (σ = 0.1) (σ = 0.1) (50%) (75%) (σ = 0.1)

3D-GSW [6] 0.764 0.631 0.726 0.727 0.764 0.828 0.634 0.810 0.842 0.828
+ Random 0.832 0.678 0.789 0.794 0.832 0.851 0.665 0.831 0.861 0.851
+ Greedy (Ours) 0.852 0.685 0.806 0.816 0.852 0.907 0.688 0.888 0.914 0.907

GuardSplat [7] 0.557 0.574 0.562 0.558 0.557 0.578 0.585 0.583 0.578 0.578
+ Random 0.599 0.598 0.599 0.601 0.599 0.647 0.616 0.636 0.648 0.647
+ Greedy (Ours) 0.601 0.597 0.600 0.602 0.601 0.650 0.616 0.639 0.651 0.650

GaussianMarker [9] 0.652 0.509 0.555 0.616 0.652 0.623 0.499 0.541 0.625 0.623
+ Random 0.686 0.511 0.573 0.644 0.686 0.668 0.501 0.568 0.663 0.668
+ Greedy (Ours) 0.691 0.511 0.575 0.649 0.691 0.669 0.501 0.567 0.666 0.669

3D-GSW [6]

Lego [1] Salt [18]
0.375 0.531

GuardSplat [7]

Materials [1] Cup [18]
0.406 0.469

GaussianMarker [9]

Mic [1] Ball [18]
0.500 0.500

Fig. 4. Example of low bit accuracy despite moderate-to-high visual
quality, sampled by MSVS; numbers indicate bit accuracy.

where we use baking, ball, chips, cup, curry, gnome, grogu, pepsi,
pitcher, and salt because other scenes lack an original image with
vis(·) ≥ τ . For Stanford-ORB, we apply the object mask to re-
move background and downsample by 2. For robustness, following
[6, 7, 9], we add zero-mean Gaussian noise with standard deviation
0.1, JPEG at 50% quality, scaling to 75% of the original size, and
Gaussian blur with a 3 × 3 kernel and 0.1-pixel standard deviation,
then evaluate on the MSVS viewpoints.

4.2. Experimental Results

Table 1 reports per method results, including rendering quality eval-
uation using Structural Similarity Index (SSIM) [21], Peak Signal-
to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [22]. Embedding a watermark in additional views
slightly degrades rendering quality because it introduces noise that
is ideally invisible to human observers but measurable in quantitative
evaluations.

MSVS broadens evaluation coverage. For all methods, bit ac-
curacy on MSVS generated test sets is consistently lower than on the
test sets provided by the dataset. This discrepancy is also observed
in bit accuracy for attacked images as shown in Table 2. This indi-
cates that MSVS samples viewpoints with low bit accuracy that are
not covered by the original splits and therefore evaluates watermark
coverage more strictly. Figure 4 presents examples of renderings
with low bit accuracy. The rendering quality of low-texture objects
(salt and cup) is only moderate, which suggests optimization diffi-
culty and may partly explain the low bit accuracy. However, even
well-textured objects with high rendering quality can exhibit low bit
accuracy. This suggests that existing methods, when trained on splits
curated for novel view synthesis, generalize well in terms of image
quality for unseen views but do not achieve equally broad watermark
coverage.

Greedy subsampling improves MSVS accuracy. The greedy
algorithm substantially improves bit accuracy on the MSVS view-
points, especially for 3D-GSW, whereas gains are marginal for
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Fig. 5. Bit accuracy after training with the greedy algorithm.

GuardSplat on Blender and for GaussianMarker on Stanford-ORB.
Two factors likely explain this result. First, as Figure 5 shows,
GuardSplat attains very high training set bit accuracy but much
lower test set accuracy. This gap indicates limited generalization in
spatial watermark coverage: adding a new training viewpoint mainly
boosts accuracy at that viewpoint, with little benefit transferring to
nearby views. Consequently, most MSVS viewpoints yield similar
marginal gains, so the choice of subsampling strategy matters little.
Second, GaussianMarker exhibits substantially lower training-set
bit accuracy than the other methods, indicating that it sometimes
fails to embed a watermark even at training viewpoints. In such
cases, adding a viewpoint does not reliably improve its bit accu-
racy, which violates the monotonic-improvement assumption of our
kernel model that multiplies bS(x) by k(d) ≥ 1. This mismatch re-
duces the advantage of the greedy algorithm. By contrast, 3D-GSW
trains reliably and generalizes better across neighboring views, so
greedy subsampling yields large improvements on MSVS.

5. CONCLUSION

We introduced Multi-Shell Viewpoint Sampling (MSVS), a visibility-
bounded, object-centric protocol that evaluates 3D watermark bit
accuracy over a broad, well-covered set of viewpoints. MSVS con-
sistently reveals failures that dataset-provided test views miss, and
our greedy subsampling strategy further improves protection, espe-
cially for 3D-GSW, with gains that persist under common image
attacks. MSVS provides a method-agnostic, reproducible proto-
col that we recommend as a standard for future 3D watermarking
benchmarks. As future work, we will explore data-driven kernels
k(d) that replace the current handcrafted heuristic by learning or
calibrating parameters from pre-trained, watermarked models, with
the goal of reducing manual tuning and further improving accuracy
and efficiency.
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