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Abstract. Advanced Persistent Threat (APT) is one of the most rep-
resentative attacks that pose significant challenges to Internet of Things
(IoT) security due to its stealthiness, dynamism, and adaptability. To de-
tect IoT APT, machine learning-based methods are proposed to extract
traffic features and mine attack semantics automatically. However, IoT
APT traffic sample in actual scenarios is unbalanced and scarce, which
affects the detection performance of existing methods. To resolve these
challenges, we propose a data-enhanced meta-learning (DEML) method
for detecting IoT APT traffic in this paper. Specifically, DEML uses non-
functional feature-based generative adversarial network (NFGAN) to ex-
tend IoT APT traffic samples. DEML also uses a meta-learning model
to further enhance the learning ability to IoT APT samples (including
newly generated and original IoT APT traffic samples). We conduct ex-
periments on a hybrid dataset where benign traffic comes from IoT-23
and APT traffic comes from Contagio. Experimental results show that
our method outperforms the existing data enhancement methods. In ad-
dition, DEML achieves a detection accuracy of 99.35%, which is better
than the baseline models in IoT APT traffic detection.

Keywords: IoT Security · APT traffic detection · Meta-learning · Gen-
erating adversarial networks.

1 Introduction

In recent years, Internet of Things (IoT) has been applied to smart medical [1],
smart agriculture [2], smart city [3], smart transportation [4] and other fields.
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The widespread adoption of IoT has brought many benefits, but it has also
raised serious security concerns due to the vulnerability of IoT devices. Advanced
Persistent Threat (APT) is one of the most representative attacks that poses
significant threats to the security of the IoT due to its variability, high impact
and difficult defense. For example, in 2019, the Russian hacker group Sandworm
Team attacked an energy company in Ukraine and caused serious damage to
its power system by exploiting the company’s IoT devices [5]. In July 2020,
the UK’s National Cyber Security Centre agency released a report revealing
an APT attack launched by the Russian hacker group APT29 that targeted
medical institutions, vaccine manufacturers, and research organizations in the
UK in an attempt to steal sensitive information related to COVID-19 vaccines [6].
Therefore, IoT APT attack detection is particularly important in IoT security.

Log-based detection and network traffic-based detection are two commonly
used APT detection methods [7]. Log-based detection method usually use pat-
tern recognition and correlation analysis to find anomalies in log data [8]. How-
ever, they often require large amounts of memory and computing resources
to store and analyze massive amounts of log data, which brings challenges to
resource-constrained IoT environments [9]. Traditional network traffic-based de-
tection methods use predefined rules or signatures to detect network attacks, but
they usually require manual update and maintenance rules or signatures [10].
To address these issues, machine learning-based methods have been introduced.
These methods typically use machine learning algorithms to automatically learn
and recognize anomalous or malicious behaviors in network traffic [11]. They are
not only applicable to networks of different sizes, but also capable of detecting
complex and variable attacks. However, machine learning-based methods require
a large amount of attack traffic data to learn their behavioral characteristics. In
the actual network environment, the available IoT APT attack traffic samples
are unbalanced and scarce, which affects the detection performance of existing
machine learning-based methods.

Data augmentation is an effective method to improve the model performance
when dealing with a small amount of data. A common method in data augmen-
tation is generative adversarial network (GAN), which continuously improves
the model performance by adversarial training between the generator and the
discriminator, making the generated data similar to the real data. The realism
of the data generated by GAN is proportional to the amount of training data.
So, when training samples are scarce, GAN may perform poorly [12].

To address this problem, we propose a data-enhanced meta-learning (DEML)
method, which uses a non-functional feature-based GAN (NFGAN) to augment
IoT APT traffic for better training of meta-learning models. Specifically, DEML
first divides the original IoT APT traffic feature vector into functional and non-
functional parts based on the feature importance calculated by gradient boosting
decision trees. Next, DEML combines the generated non-functional parts using
meta-learning based NFGAN with the preserved functional features to obtain the
generated APT traffic features, thereby enhancing their realism. Then, DEML
adopts the meta-learning model using original traffic and generated APT attack
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traffic to effectively discover APT traffic in the case of limited APT attack
samples. In summary, our contributions are as follows:

1 We design a non-functional feature-based generative adversarial network
(NFGAN) to mitigate the scarcity and imbalance of APT traffic data. It
not only uses a meta-learning framework to enhance the learning of APT
few sample feature, but also generates only the non-functional part of APT
traffic sample to ensure the authenticity of the generated APT samples.

2 We propose a data-enhanced meta-learning method, called DEML, to de-
tect APT attacks in IoT. DEML not only uses the generated APT samples
through NFGAN to expand APT traffic, but also utilizes the meta-knowledge
learned through multi-tasking to further enhance the model performance.

3 We conduct experiments on the hybrid dataset, and the experimental results
show that our proposed approach achieves better performance than the state-
of-the-art data enhancement methods. In addition, it outperforms commonly
used machine learning models for APT traffic detection.

The remainder of this paper is arranged as follows: Section 2 describes the related
work on APT detection. In Section 3, our proposed DEML is illustrated in detail.
The analysis of the experimental results of DEML is presented in Section 4. In
Section 5, conclusions are drawn.

2 Related Work

This section provides a review of related work on APT detection methods based
on log analysis and network traffic analysis.

2.1 Log-based Detection Methods

Log-based detection methods discover potential attacks through analyzing logs
from monitored devices. For example, Niu et al. [13] proposed a method to de-
tect APT malware command and control (C&C) domains by analyzing DNS
logs. Li et al. [14] combined semantic embedding and temporal embedding to
train a uniform attention-based BiLSTM model for log anomaly detection. Yang
et al. [15] proposed a log-based anomaly detection method, PLELog, by com-
bining attention mechanism and gated recursive network structure. Cheng et
al. [16] proposed an APT Alert and Log Correlation Framework (APTALCM).
The framework first used network posture to reconstruct APT attack scenarios.
Then, the SimRank-based cyber situation instance similarity measurement was
introduced to compute the similarity of network posture instances. APTALCM
correlated APT alert instance logs based on similarities between instances to
identify attacker intent. Li et al. [17] proposed a federal learning-based frame-
work for APT prediction, APTPMFL. The framework was deployed in an edge
computing environment to train a model using multiple APT attack patterns in
a distributed learning fashion. The trained model can be implemented to predict
the probability of APT attacks in IoT scenarios. However, log-based detection
methods are limited in the IoT environment. This method is difficult to handle
large and heterogeneous log data on resource-constrained devices [9].
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2.2 Network-based Detection Methods

Traditional network-based detection methods discover potential attacks com-
bined network traffic characteristics with rules or signatures. For example, Liu
et al. [18] proposed a probing routes-based approach, PRDSA, to detect sinkhole
attacks in IoT. Lyu et al. [19] proposed an anomaly-based method to detect DoS
attacks in IoT. Venkatraman et al. [19] designed a hybrid intrusion detection sys-
tem based on timed automation controller, which successfully detected zero-day
attacks, DoS attacks, and control hijacking attacks in IoT environments .

In recent years, machine learning-based detection methods have become in-
creasingly popular, as they can automatically extract and mine traffic charac-
teristics. For example, Okutan et al. [20] developed a Bayesian classifier-based
network attack prediction system, CAPTURE. Huang et al. [21] put forward a
risk assessment method based on Bayesian networks to quantify the impact of
cyber attacks on Industrial cyber-physical systems (ICPS). Huang et al. [22] put
forward a multi-stage Bayesian game framework to capture incomplete informa-
tion about deceptive APTs and their multi-stage movements. Wang et al. [23]
found that HTTP-based C&C is widely used in APT. Based on the fact that
C&C domains are often accessed independently, they distinguished HTTP-based
C&C communication from normal HTTP requests. The existing attack traffic
detection method based on machine learning has achieved good results, but the
sample size will affect the model performance. However, the available APT traffic
samples in actual IoT scenarios are unbalanced and scarce.

3 Proposed Approach: DEML

This section introduces our proposed APT malicious traffic detection method
in IoT: DEML. It is composed of three key components: Data Pre-processing,
Data Augmentation and Malicious Traffic Detection. Fig 1 shows the framework
of DEML.

3.1 Data Pre-processing

The Data Pre-processing phase consists of two parts: (1) feature extraction and
processing, and (2) multi-task set construction.

In order to facilitate model training from effective features, we need to pre-
process the captured network traffic. First, feature vectors are extracted from
the original Pcap using CICflowmeter. Then, we use normalization and one-hot
encoding to handle discrete and continuous feature values in the feature vector
respectively, and finally obtain the processed feature vectors x. Among them,
the normalized formula is given in equation (1). In particular, for the feature
of the communication protocols ”Protocol”, we uniformly set the protocol value
whose occurrence times are lower than the set threshold as other protocol, and
its expression is “Others Protocol”.
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Fig. 1: The framework of DEML

x
′
=

x−min(x)

max(x)−min(x)
(1)

Multi-task set is built using x, each task containing benign traffic and a class
of attack traffic. In addition, Multi-task set are categorized into meta-training
set and meta-testing set. Among them, the former consists of the attack classes
with the most attack traffic and benign traffic, while the latter includes all the
attack classes and benign traffic. The meta-training set contains two subsets: the
support set and the query set. The support set is used to train the initial model,
while the query set is used to correct the model to prevent overfitting. The
meta-testing set contains two subsets: the train set and the test set. The train
set is used to fine-tune the model, while the test set is used to verify the model
performance. In addition, another multi-task set consisting of attack samples is
created in the same way to train the subsequent GAN.

3.2 Data Augmentation

In order to ensure that the generated attack instances retain the features of the
original attack instances as much as possible, we retain the functional features of
the original attack [24]. Thus, we divide the original attack feature vector x into
functional features xf and non-functional features xnf through statistical anal-
ysis of the datasets. Specifically, we use gradient boosting decision tree (GBDT)
to calculate the importance of each feature for each attack type [25]. Then, x is
divided into xf and xnf according to the importance of these features.

Because xf represents the functionality of the attack vector, if it is changed,
it will significantly change the attack characteristics . Thus, GAN only need to
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focus on the generation of the non-functional part. Firstly, the xf part of the
attack vector is obtained by the feature division. Then, a Gaussian noise of the
same dimension as xnf is randomly generated and fed into the generator G. The
output features vector from G concated to xf as the generated vector of attack
instance, which is represented as xg. xg is calculated by Equation (2), where F
is a function for concating vectors. Lastly, xg is sent to the discriminator Dis to
verify its reality.

In the process of generating the above attack instances, G and Dis form a
generative adversarial network and train against each other. On the one hand,
G has to generate the feature vector xg to bypass Dis. On the other hand, Dis
should try to distinguish xg from x. Therefore, the loss function of G is defined
using the formula (3), where M represents the size of the attack set. The loss
function of Dis is defined using Equation (4). Specifically, the training process
of the proposed NFGAN is shown in Algorithm 1. The first part of the algorithm
(lines 2-14) is to train the initial NFGAN using the support set and to correct
the NFGAN model with the query set. The second half of the algorithm (lines
14-20) fine-tunes the model with the training set to obtain the trained NFGAN.
Finally, the trained NFGAN is used to expand the APT traffic data.

xg = F (xf , G(n)) (2)

LG =
1

M

M∑
i=1

{
log

[
1−Dis(xi

g)
]}

(3)

LDis =
1

M

M∑
i=1

{
log

[
Dis(xi)

]
+ log

[
1−Dis(xi

g)
]}

(4)

3.3 Malicious Traffic Detection

This section details the malicious traffic detection part of the DEML. It consists
of an autoencoder and an Abnormal classifier (A). When new network traffic
arrives, their feature vector x is extracted through data pre-processing. Then,
x is mapped to the low-dimensional space by the autoencoder E to obtain the
latent vector z. z input into the Abnormal classifier (A) to determine whether the
newly arrived traffic is normal or malicious. Among them, A is a meta-learning-
based classifier, whose loss function is shown in Equations (5), where M denotes
the number of feature vectors in the set, and y indicates the label of table x,
which takes the value 0 or 1, xi denotes the i-th vector. The loss function of the
autoencoder is defined in Equation (6). The training process of the autoencoder
and A is described in detail in Algorithm 2. First, the model parameters are
randomly initialized as θ

′

E , θ
′

D, θ
′

A. Then a branching task TB is selected from
the meta-trainning set for model training. Lre and LA are calculated on each
task support set in the branch and used to update the model parameters θ

′

E ,

θ
′

D, θ
′

A once (line 4-11). When the support set for all tasks in a branch has been

trained, the model parameters θ
′

E , θ
′

D, θ
′

A are corrected once to take advantage
of the average loss across the branch (line 12-16) . Finally, the optimized model
parameters θE , θD, θA are obtained by fine-tuning using the train set (line 18-
26).
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Algorithm 1 Pseudocode of the NFGAN process

Input: the multi-task set of the attack, task batch size B, Number of training epochs
(train epoch)

Output: trained NFGAN
1: for epoch = 1 to train epoch do
2: for every batch TB in meta-training set do
3: for every task ti in TB do
4: get xi from the support set
5: get xi

g by Equation(2)
6: get Li

G,Li
Dis by Equation(3)(4)

7: update G and Dis using the loss
8: end for
9: get xi from the query set
10: get xi

g by Equation(2)
11: using xi and xi

g test G and Dis for each task in TB

12: get the total loss function
∑B

i=1 L
i
G ,

∑B
i=1 L

i
Dis

13: update G and Dis using the loss 1
B

∑B
i=1 L

i
G and 1

B

∑B
i=1 L

i
Dis

14: end for
15: for every task in meta-testing set do
16: get x from the support set
17: get xg by Equation(2)
18: get LG,LDis by Equation(3)(4)
19: update G and Dis using the loss
20: end for
21: end for
22: return trained NFGAN

LA =
1

M

M∑
i=1

{
y ∗ log

[
A(E(xi))

]
+ (1− y) ∗ log

[
1−A(E(xi))

]}
(5)

Lre =
1

M

M∑
i=1

{
D[E(xi)]− xi

}
(6)

4 Experimental Evaluation

4.1 Datasets

There are several public datasets for intrusion detection research in IoT, such
as IoT-23 [26], Bot-IoT [27], CTU-13 [28] and N-BaIoT [29]. However, these
datasets lack pure APT attack traffic. In order to obtain an usable APT dataset,
Katharina et al. [30] created a hybrid dataset by merging a benign dataset with
an APT dataset as the background. Thus, we constructed our experimental
dataset by adopting this strategy, where the APT dataset was from Contagio
malware database contributed by Mila Parkour [31] and the benign data was
from the IoT-23 dataset created by Stratosphere Laboratory CTU University.
The details of the constructed experimental dataset are shown in Table 1.
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Algorithm 2 Parameter search algorithm

Input: the multi-task set, subset size M , task batch size B, learning rates η, λ, ξ;
Output: optimized θE , θD, θA
1: Randomly initialize θ

′
E , θ

′
D, θ

′
A

2: for epoch = 1 to train epoch do
3: for every batch TB in meta-training set do
4: for every task ti in TB do
5: θE , θD, θA,← θ

′
E , θ

′
D, θ

′
A

6: Get (X,Y ) =
{
(x, y)1, ..., (x, y)M

}
y ∈ {0, 1} from the support set

7: Get Lre,LA by Equation(6)(5)
8: θiE,D ← θE,D − λ
9: θiA ← θA − λ∇θALA(θA)
10: end for
11: Get (X,Y ) =

{
(x, y)1, ..., (x, y)M

}
y ∈ {0, 1} from the query set

12: Get Lre,LA by Equation
13: Update θ

′
E,D by θ

′
E,D − η 1

B

∑B
i=0∇θi

E,D
Lre(θ

i
E,D)

14: Update θ
′
A by θ

′
A − η 1

B

∑B
i=0∇θi

A
LA(θ

i
A)

15: end for
16: for every task in meta-testing set do
17: Get (X,Y ) =

{
(x, y)1, ..., (x, y)M

}
y ∈ {0, 1} from the train set

18: Get Lre,LA by Equation(6)(5)

19: Update θE,D by θ
′
E,D − ξ 1

B

∑B
i=0∇θi

E,D
Lre(θ

i
E,D)

20: Update θA by θ
′
A − ξ 1

B

∑B
i=0∇θ

′
A
LA(θ

′
A)

21: end for
22: end for

Table 1: Details of the synthetic dataset

Type Ratio(%) Source Type Ratio(%) Source

Benign 86.55 iot-23 Hupigon 0.46 Contagio
TrojanCookies 5.35 Contagio Gh0st variant 0.30 Contagio

Pingbed 1.73 Contagio Taidoor 0.31 Contagio
LURK 1.42 Contagio PlugX 0.22 Contagio
Mediana 1.34 Contagio Nettravler 0.21 Contagio

PDF CVE 0.69 Contagio Sanny Daws 0.21 Contagio
Xinmic 0.65 Contagio RssFeeder 0.16 Contagio
8202 0.40 Contagio

4.2 Experimental Setup

Evaluation Environment: DEML is evaluated on a 12-core Intel(R) Core(TM)
i9-10920X CPU @ 3.50GHz with 256 GB of RAM and the Ubuntu 20.04 LTS
operating system with Linux kernel v.5.11.0. PyTorch v1.7.1 is chosen to imple-
ment related experiments with Jupyter notebook.
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Evaluation Metrics: In this paper, we adopt the widely used metrics for
evaluating the performance of DEML: Accuracy (Acc), Precision (Pre), Recall
(Rec), F1-score (F1), True Positive Rate (TPR) and False Positive Rate (FPR).
Accuracy (Acc) is the proportion of the number of correct detected APT traffic
and benign traffic to the number of all the network traffic, which is calculated by
Equation (7). Precision (Pre) is the proportion of the number of correct detected
APT traffic to the number of the detected APT traffic, whose calculation formula
is shown in Equation (8). Recall (Rec) is the proportion of the number of correct
detected APT traffic to the number of the actual APT traffic, whose calculation
formula is shown in Equation (9). F1-score (F1) is a comprehensive evaluation
metric using the weighted and averaged recall and accuracy, which is calculated
through Equation (10). TPR reflects the ratio of correctly detected APT traffic,
and FPR shows the ratio of the benign traffic that are incorrectly classified as
APT traffic. Receiver Operating Characteristic (ROC) curve is used to visualize
the relationship between TPR and FPR, and its Area Under Curve (AUC) is
used to measure the performance of the model. Precision Recall Curve (PRC)
is used to reflect the relationship between Pre and Rec. Besides, we use Fréchet
Inception Distance (FID) to measure the authenticity of the generated data. FID
denotes the distance between the generated data and the real data in the feature
space, which is calculated by Equation 12, where µ represents the feature mean,
Tr represents the trace of the matrix, and C represents the covariance matrix
of the feature vector (x and xg represent the real data and the generated data).
The smaller the FID value of the generated data, the closer it is to the real data.

Acc =
TP + TN

TP + FN + FP + TN
(7)

Pre =
TP

TP + FP
(8)

Rec = TPR =
TP

TP + FN
(9)

F1 = 2 ∗ Rec ∗ Pre

Rec+ Pre
(10)

FPR =
FP

FP + FN
(11)

FID(x, xg) = ∥µx − µg∥22 + Tr(Cx + Cxg − 2 ∗
√
(Cx ∗ Cxg )) (12)

Baseline Setting: To evaluate the effectiveness of DEML on data enhancement,
we compared it with several existing data enhancement methods: G-IDS [32]
solved the problem of data imbalance in the cyber-physical system by using
basic GAN for traffic data generation to improve the performance of IDS. FCW-
GAN [33] retained the important features of traffic data based on the feature
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importance calculated by XGBoost. It then generated data on a few classes of at-
tack traffic using CWGAN to reduce the impact of unbalanced data. SIGMA [24]
used the same feature segmentation as DEML, and then adopted basic GAN
to generate adversarial samples to enhance the detection performance of IDS.
ML-CGAN [12] integrated a meta-learner structure into the conditional GAN
(CGAN) backbone to improve the quality of the generated images when the
training data was scarce. Moreover, we also selected several algorithms (SVM,
RF, DNN, GDBT, AdaBoost) that perform well in classification tasks as baseline
models to compare their performance in APT detection.

4.3 Evaluation Results

Comparative Experiments with Different Data Enhancement Algo-
rithms: To evaluate the performance of different data enhancement methods,
we use a meta-learning model trained with the original data to detect generated
APT traffic. Besides, we also calculate the FID values of the generated data
using five different data enhancement algorithms and count their total training
time consumed after training 100 epochs. Table 2 shows the performance of the
five methods. We can see that the detection model achieves only 85.12% Acc,
80.41% F1 for the generated data using traditional GAN (G-IDS) and G-IDS
has the highest FID value, which indicates that the generated data has a large
deviation from the real data. This is because the traditional GAN can only learn
limited knowledge from a restricted number of samples in the training phase. Op-
timized GANs (including FCWGAN, SIGMA ) outperform G-IDS, but still have
a higher FID. This suggests that adding labels and retaining functional features
when training the GAN can slightly improve performance. The meta-learning
based GAN (ML-CGAN and NFGAN) have lower FID values and better per-
formance compared to other types of GANs. This is because these models can
use meta-knowledge learned from previous data to enhance the GAN’s learning
of features of new data. Moreover, our proposed method has a lower FID value,
shorter training time and better accuacy compared to ML-GAN. This is be-
cause NFGAN not only ensures the authenticity of the generated APT samples
by generating only the non-functional part of the samples, but also reduces the
dimensionality of the data training. Therefore, meta-learning based NFGAN is
more suitable for scenarios with sparse and unbalanced APT traffic samples.

Comparative Experiments with Different Classification Models: Un-
der the same experimental conditions, the baseline algorithms are also trained
on the NFGAN-enhanced dataset. The experimental results are shown in the
table 3. We can see that the proposed DEML achieves 99.35% Acc, 99.57%Pre,
98.78% Rec and 99.39% F1. In general, Combined with meta-learning-based
DEML achieves competitive accuracy compared to traditional machine learning
and deep learning algorithms such as SVM, RF, DNN. They also perform well
compared with ensemble learning-based classification methods, such as GDBT
and AdaBoost. This is because the meta-learning based DEML can use the meta-
knowledge learned from previous data to enhance learning for the new data. In
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Table 2: Comparison of data enhancement algorithms

Method Acc F1 FID Trainning time

G-IDS [32] 85.12% 80.41% 283.42 91.8s

FCWGAN [33] 89.87% 85.87% 245.56 54.82s

SIGMA [24] 90.17% 86.99% 215.15 81.73s

ML-CGAN [12] 93.84% 91.40% 64.63 61.76s

Our NFGAN 95.78% 93.12% 23.72 49.15s

addition, Figure 2 shows the ROC curves and PRC curves for different classifi-
cation models. According to Figure 2(a), we find that DEML has a higher false
alarm rate compared to the baseline algorithm when achieving the same accu-
racy. The PRC curve of DEML is better than the other baseline algorithms as
can be seen from Figure 2(b). This indicates that DEML has higher detection
accuracy when all methods achieve the same recall. These results shows that
DEML is more suitable for IoT APT traffic detection.

Table 3: Abnormality detection performance of DEML and baseline methods (%)

Method Acc Pre Rec F1

SVM 74.39 99.24 52.44 74.7

RF 84.8 88.5 84.8 84.6

GBDT 95.9 99.14 93.34 96.01

AdaBoost 97.86 99.25 95.99 97.96

DNN 86.69 99.17 75.09 85.77

DEML 99.35 99.57 98.78 99.39

4.4 Ablation Study

Our DEML contains three main components: data pre-processing, data aug-
mentation and malicious traffic detection. In the data augmentation part, the
generative adversarial network is used to expand the sparse APT traffic data. In
the malicious traffic detection part, the meta-learning based detection model can
achieve fast learning for few samples through multi-task learning. To investigate
the impact of meta-learning framework and feature partitioning in the model,
we design three variants of DEML: DEML1, DEML2 and DEML3. DEML1: The
feature vector of the traffic data is fitted directly using Gaussian noise without
the feature partitioning on the data enhancement. DEML2: Instead of using a
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Fig. 2: ROC and PRC of DEML and baselines

meta-learning framework for data augmentation, a basic GAN is used to gen-
erate the non-functional part of the traffic feature vector. DEML3: NFGAN is
used for data enhancement. And traditional DNNs are used to detect malicious
traffic.

The experimental results of each variant on the hybrid dataset are shown in
Table 4. It can be seen that DEML performs better than DEML1. This suggests
that NFGAN can improve the quality of the generated data by generating only
the non-functional part of sample. DEML2 and DEML3 are both worse than
DEML, which demonstrates that meta-learning framework can greatly improve
model performance not only in data augmentation but also in detection model.

Table 4: Performance of DEML with different ablation settings (%)

Method Acc Pre Rec F1

DEML1 94.75 95.71 93.64 94.82

DEML2 89.54 91.48 89.52 89.57

DEML3 86.69 99.17 75.09 85.77

DEML 99.35 99.57 98.78 99.39

5 Conclusion

In this paper, we proposed DEML, a Data-Enhanced Meta-Learning approach
for detecting IoT APT traffic. DEML used NFGAN to expand IoT APT traffic
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samples to mitigate the impact of unbalanced data on the model. NFGAN only
generated the non-functional part of the APT traffic samples and retained its
functional part. In this way, the authenticity of the generated APT samples was
guaranteed. In addition, DEML used meta-knowledge learned from the extended
samples to enhance the model’s ability to discover APT traffic in the absence
and imbalance of original attack samples. We constructed a hybrid dataset to
validate the performance of DEML in terms of data enhancement and detection
of APT traffic.

Extensive experimental results show that: 1) our deisgned NFGAN outper-
forms the existing traffic data enhancement methods; 2)Retaining functional
features and generating only non-functional features can further improve the au-
thenticity of generated APT traffic; 3) using meta-learning models can further
improve the detection rate when APT traffic samples are scare and unbalanced.
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