
A Robust Malicious Traffic Detection Framework
with Low-quality Labeled Data

Lingfeng Yao∗, Weina Niu∗, Qingjun Yuan‡, Beibei Li†, Yanfeng Zhang§, Xiaosong Zhang∗
∗School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

†School of Cyber Science and Engineering, Sichuan University, Chengdu, China
‡Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, China

§Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou, China

Abstract—Deep learning (DL) techniques have been widely
applied in detecting malicious activities from network traffic.
However, it is challenging to collect a traffic dataset with sufficient
correct labels. The generalization ability of DL-based malicious
traffic detection systems decreases when training with mislabeled
data. Therefore, several methods have been proposed to detect
malicious traffic from low-quality labeled training data. These
methods divide noisy and clean samples based on the divergence
of their prediction loss. However, this simple criterion is not
effective on traffic data due to the obfuscation and redundancy
nature of malicious traffic. In this paper, we propose a novel two-
stage framework for malicious traffic detection from low-quality
training data, which mainly consists of noisy sample filtering
and label refinement. Firstly, with the help of the small loss
criterion, we filter out most of the noisy samples from training
data while ensuring that the filtered dataset covers sufficient clean
samples. Next, we introduce a double-constrained similarity rule
to provide a comprehensive measure of the similarity between
samples and construct a topological graph. Lastly, we exploit
the topological relations extracted from this graph to refine the
labels based on the neighbor consistency criterion. We validate
the effectiveness of our framework with a real-world malicious
traffic dataset, achieving an accuracy of 90% even with 80%
symmetric noise labels. Additionally, results from the publicly
available BoT-IoT dataset demonstrate the adaptability of our
framework to Internet of Things (IoT) environments.

Index Terms—Malicious traffic detection, Label noise, Low-
quality data, Deep learning

I. INTRODUCTION

Intrusion detection systems (IDS) play an important role in
detecting malicious behaviors in network environments. Tradi-
tional rule-based intrusion detection methods are outdated as
they rely on hand-crafted rules, leading to a high false alarm
rate in large-scale network scenarios [1]. Currently, network-
based intrusion detection methods have been widely used in
various network scenarios to detect malicious traffic. These
methods can automatically extract deep features of traffic data
and learn potential divergence between different classes of
traffic. However, the performance of existing approaches tends
to highly depend on clean training data.

In general, when constructing malicious traffic datasets,
experts simulate both normal and attack activities in a sandbox
environment and label the traffic based on different IP address

This work was supported by the Opening Project of Intelligent Policing Key
Laboratory of Sichuan Province (No. ZNJW2023KFQN003). (Corresponding
author: Weina Niu.)

mappings associated with attackers and regular users. How-
ever, a complete attack activity may include some normal ac-
tivities [2], and the reliance on the single IP rule can inevitably
introduce noisy labels, i.e., mislabeled traffic data, into the
training set. Moreover, the obfuscation and redundancy nature
of encrypted traffic poses a significant challenge for human
annotators to accurately label the collected data in real-world
scenarios. Network-based malicious traffic detection systems
may fit mislabeled samples during the training stage, resulting
in a great decline in the detection performance. Therefore,
obtaining robust detection models from noisy data (low-quality
data) is currently considered an urgent and necessary problem.

Many scholars have carried out research to solve this label-
ing noise problem [3]–[6]. The main idea of these methods is
to separate noisy samples from clean ones based on the diver-
gence of their prediction loss and divide the original dataset
into the labeled set (clean samples) and the unlabeled set
(noisy samples), respectively. This can transform the learning
with noisy labels (LNL) task into a semi-supervised learning
(SSL) task. However, these approaches have limitations in
both sample selection and semi-supervised learning. In the
sample selection stage, existing methods [3]–[5] rely heavily
on predicted loss variances of samples while ignoring the
topological information from the feature space. This may
inevitably introduce confirmation errors during the training
process. Bahri et al. [6] proposed to filter mislabeled samples
based on the assumption that samples of the same class are
closer in the feature space. However, due to the obfuscation
and redundancy nature of encrypted malicious traffic, it is
difficult to precisely divide clean and noisy data. On the other
hand, the performance of semi-supervised learning [3] [4] is
dependent on the gain from prediction consistency, where the
model is trained to output consistent predictions for data-
augmented samples. Unlike image inputs, network traffic data
lacks reasonable data augmentation techniques such as rotation
and cropping. Consequently, these data augmentation-based
SSL methods are not applicable to tackle label noise in traffic
detection systems.

To obtain a robust malicious traffic detection model with
low-quality training data, this paper proposes a novel two-stage
learning framework. Firstly, in the preliminary filtering stage,
we employ the small loss criterion to select noisy samples from
each class of traffic data. This ensures that the cleaned dataset

covers a sufficient number of clean samples while significantly
reducing the label noise rate. Secondly, in the label refinement
stage, we propose a double-constrained similarity rule, i.e.,
feature distance similarity and probabilistic trend similarity,
to construct the similarity topology graph of samples. The
former assumes that samples of the same class have similar
locations in the high-dimensional feature space [6] and the lat-
ter assumes that these samples also have similar optimization
dynamics [7]. Then, the refinement of potential noisy labels
is guided by the neighborhood consistency assumption that
adjacent samples in the topology map share the same label.
Our main contributions can be summarized as follows:

• We filter noisy samples from each class based on the
small loss criterion. This ensures a comprehensive dis-
tribution of clean samples while effectively reducing the
label noise rate of the training set, thus mitigating the
impact of mislabeled data on label refinement.

• We propose a novel double-constrained similarity rule to
construct a similarity topology graph and update labels
using a topology graph-based label refinement mecha-
nism. It effectively avoids the accumulation of noisy
labels and improves the detection performance of the
proposed model.

• We verify the effectiveness of the proposed framework
on our encrypted malicious traffic dataset constructed in
the real world and a popular public traffic dataset. Our
proposed framework outperforms several state-of-the-art
methods under different label noise scenarios.

II. RELATED WORK

A. Noisy Labels in Traffic

Building malicious traffic detection systems requires a large
amount of accurately labeled data. Currently, most malicious
traffic datasets are constructed by simulating known attacks
and capturing network traffic in a controlled environment [8].
However, during these simulations, certain legitimate traffic
such as ARP messages, can be generated in the early and
later stages of the attack [2]. This legitimate traffic may
erroneously be identified as malicious due to the rigid machine
labeling mechanism, thus inevitably introducing label noise.
On the other hand, unlike tasks such as image labeling where
distinguishing between a cat and a dog is quite straightforward,
labeling traffic data is more challenging. Due to its redundancy
and obfuscation nature, different experts may provide varying
labels based on their experience. For instance, when labeling
the 496 samples in a dataset, only 12% of them received con-
sistent labels from the majority of experts [9]. Consequently,
manual labeling can result in severe label noise impact.

B. LNL-Based IDS

LNL methods aim to learn robust models from low-quality
labeled datasets. Zhang et al. [10] introduced an adaptive gen-
eralized loss that automatically adjusts the model’s sensitivity
to noise labels. However, this method can not work well in
highly noisy scenarios. Zhao et al. [11] proposed a label proof-
reading framework based on multi-model voting prediction to

realize malicious traffic detection, but the integrated model
still relies on a limited amount of clean labeled data, which
may not align with real-world assumptions. Li et al. [3] and
Karim et al. [4] transformed the LNL problem into an SSL
problem using the small loss criterion. However, these methods
might not be suitable for network traffic data due to the lack
of reasonable data augmentation techniques. Bahri et al. [6]
employed label propagation on samples based on their feature
distribution, but its performance suffered a significant decline
as the label noise rate increased.

III. THE PROPOSED FRAMEWORK

In this section, we first briefly describe our data preprocess-
ing strategy for network traffic datasets. Then our proposed
framework will be described in detail. The overall workflow
of our framework is shown in Fig. 1.

A. Data Preprocessing

When constructing network traffic datasets, it is necessary
to include some important categorical attributes, such as des-
tination port numbers and network protocols, while preserv-
ing numerical features like packet length and flow duration.
The values of these attributes are discrete and hard to be
leveraged by deep learning models directly. The conventional
approach [12] involves converting categorical features into
one-hot encoding features. However, this approach may not be
suitable for network traffic datasets [1]. Take the destination
port as an example, a network traffic dataset can include up
to 65,536 distinct ports. Applying one-hot encoding in ports
would introduce 65,536 new sparse features to the dataset,
leading to the curse of dimensionality.

Following Hou et al. [13], we employ the idea of mapping
the categorical features to their respective frequencies. We
count the occurrences of each feature value in the training
set and normalize them to obtain the frequency of each value,
thus creating a mapping from feature values to their respective
frequencies. For the test data, we transform feature values
into frequency values using this mapping. Specifically, for
feature values that do not appear in the mapping, we set their
frequency values to 0. The frequency is calculated as shown
in Eq. 1.

Freq(v) =

{
nv/N if v ∈ V
0 if v /∈ V (1)

where V denotes the set of values for the categorical
feature in the training data. v is a specific value of this
categorical feature. nv signifies the count of occurrences of
this specific value, and N refers to the total number of training
data. For instance, the UDP protocol is commonly used for
data transmission. If out of 1000 training samples, the UDP
protocol appears 340 times, the frequency of protocol UDP is
calculated as 0.34 using Eq. 1. Subsequently, we replace the
protocol UDP with its frequency of 0.34 in both the training
and testing datasets.

We normalize the numerical features in the dataset and drop
rows containing outliers or missing values. The dataset is then
divided into a training set and a testing set in a 7:3 ratio. As

Noisy sample filtering Label refinement
latent real label

given label

Clean Traffic

Noisy Traffic

Noisy Label

Training Dataset

Clean Traffic

Noisy Traffic

Noisy Label

Training Dataset

Clean Traffic

Noisy Traffic

Noisy Label

Training Dataset

Neighbor-Consistency

Label Refinement Module

Neighbor-Consistency

Label Refinement Module

Neighbor-Consistency

Label Refinement Module Purified

Training Dataset

Purified

Training Dataset

Purified

Training Dataset

Detection

Testing TrafficTesting TrafficTesting Traffic

loss-based filter

N
o

is
e

F
il

te
ri

n
g

 M
o

d
u

le

Noisy DatasetNoisy Dataset

Filtered Dataset

Cls.Layer

loss-based filter

N
o

is
e

F
il

te
ri

n
g

 M
o

d
u

le

Noisy Dataset

Filtered Dataset

Cls.Layer

loss-based filter

N
o

is
e

F
il

te
ri

n
g

 M
o

d
u

le

Noisy Dataset

Filtered Dataset

Cls.Layer DL-based Malicious Traffic

Detection Model

C
ls

.L
ay

er

4
DL-based Malicious Traffic

Detection Model

C
ls

.L
ay

er

4
DL-based Malicious Traffic

Detection Model

C
ls

.L
ay

er

4

Feature Distance Probabilistic Trend

Constraint-Similarity

CS-based k-NN Graph

Topology Construction Module

Feature Distance Probabilistic Trend

Constraint-Similarity

CS-based k-NN Graph

Topology Construction Module

Feature Distance Probabilistic Trend

Constraint-Similarity

CS-based k-NN Graph

Topology Construction Module

Fig. 1: Overview of the proposed framework. In the first stage, we perform preliminary noisy sample filtering to filter out most
of the noisy samples. In the second stage, we construct a topological graph based on the double-constrained similarity rule
and utilize it to refine mislabeled samples. Finally, we obtain the purified dataset, which is used for training and achieving
malicious traffic detection.

illustrated in Fig. 1, the testing set plays no role in the training
process and remains free from label noise. In the training set,
we introduce two realistic noise labels by flipping the labels
according to the settings detailed in Section IV-B.

B. Noisy Sample Filtering

Let D = {(xi, yi)}N represents the training dataset for
network traffic, which includes noisy labels. Here, xi denotes
the i-th traffic sample, yi is the given label corresponding to xi

in the training set, and N signifies the total number of training
samples. For each xi, there exists one unique latent real label
ŷi ∈ {1, 2, · · · , C}, where C denotes the total number of
traffic categories. If yi ̸= ŷi, then xi is considered the noisy
traffic, otherwise, it is regarded as clean traffic.

As depicted in step one, our noise filtering module com-
prises two essential components: a feature extractor, denoted as
f(.; θ) with parameter θ, and a classification layer, represented
as g(.;ϕ) with parameter ϕ. The feature extractor f is a
fully connected neural network that removes the classification
layer, which is designed to transform the input network traffic
features into meaningful representations with latent infor-
mation. Meanwhile, the classification layer g outputs model
predictions for each sample.

The previous research [14] has demonstrated that deep
neural networks tend to prioritize the learning of clean samples
in the early stages of model training. Consequently, clean
samples exhibit lower prediction losses compared to noisy
ones. By evaluating the divergence in prediction losses be-
tween noisy and clean samples, we can identify and filter out
easy instances of noisy traffic. First, we initiate model pre-
training, denoted as g(f(.; θ);ϕ) for several epochs using the
training set D which contains a certain ratio of noisy labels.
During this process, we update the parameters θ and ϕ. Then,
we employ the cross-entropy loss to quantify the divergence

20 40 60 80
NR in training set(%)

0

10

20

30

40

50

60
NR

 in
 fi

lte
re

d
se

t(%
)

r = 0.2
r = 0.5
r = 0.8

20 40 60 80
NR in training set(%)

20

40

60

80

100

CR
 o

f C
le

an
 sa

m
pl

e(
%

)

r = 0.2
r = 0.5
r = 0.8

Fig. 2: Noise rate (NR) and clean sample coverage rate (CR)
with different portion r.

between the model’s predicted probability g(f(xi; θ);ϕ) and
the given label yi for each sample. Lc denotes the set of
prediction loss for each class c, where c ∈ {1, 2, · · · , C}:

Lc = {−yi log g(f(xi; θ);ϕ) | yi = c} (2)

During the noise filtering process, we maintain class balance
by retaining a fraction r of the sample labels with low
prediction losses from each class. The remaining 1−r portion
of samples are considered as noise, and their labels are
discarded. Consequently, we aggregate the divided clean and
noisy samples of each class to create Dclean of Nr and Dnoisy

of N(1− r).
In Fig. 2 left, we depict how different values of hyper-

parameter r relate to the noise rate in the filtered dataset
compared to the original training set. Fig. 2 right illustrates
the relationship between the coverage of clean samples in the
filtered dataset and the noise rate in the original training set.
We set r to 0.5, effectively reducing noise while preserving
essential information from clean samples.

C. Label Refinement

Following step one, we obtain the filtered dataset and the
feature extractor f with updated parameters θ through pre-
training. Inspired by previous studies [15] [7], we note that
the feature space is more robust to noisy labels than the
output space, and samples belonging to the same class exhibit
similar optimization dynamics. Building upon these insights,
we introduce a double-constrained rule that leverages feature
distance similarity and prediction probability trend similarity
to construct a topological relationship graph among samples.
Subsequently, we employ learned topological similarity to
perform label refinement.

1) Feature distance similarity: Given that contextual infor-
mation in the feature space is more robust to noisy labels,
we explore high-dimensional information in the feature space.
We employ the cosine distance to quantify the similarity
among two high-dimensional features δi = f(xi; θ) and
δj = f(xj ; θ).

Sfeat(i, j) = 0.5(1 +
δi · δj

∥ δi ∥2∥ δj ∥2
) (3)

where Sfeat(i, j) ranges from 0 to 1. The closer Sfeat(i, j)
approaches 1, the more similar δi and δj are.

2) Probabilistic trend similarity: Considering the consistent
optimization dynamics among samples from the same class,
we presume that samples sharing the same class have similar
change trends in their prediction probability. We define the
prediction probabilistic change trend as:

∆pi = gend(f(xi; θ);ϕ)− gstart(f(xi; θ);ϕ) (4)

where gend represents the predicted probabilities at the end of
the pre-training stage and gbegin signifies the beginning. We
employ Jensen-Shannon divergence (JSD), denoted as d(i, j),
as the criterion for quantifying the similarity of change trends
between two predicted probabilities.

d(i, j) = JSD(∆pi,∆pj)

=
1

2
KL(∆pi||

∆pi +∆pj
2

) +
1

2
KL(∆pj ||

∆pi +∆pj
2

)

(5)

where KL(.) is the Kullback-Leibler divergence function. The
closer d(i, j) approaches 0, the more similar ∆pi and ∆pj
are.

3) Topology construction: Based on these two similarity
metrics, we propose a novel double-constrained similarity rule
to construct the topological graph.

Sim(xi, xj) = (1− σ)Sfeat(i, j) + σ(1− d(i, j)) (6)

where σ is the fusion coefficient to adjust the portion of these
two similarities.

For each sample within the dataset, we select the k samples
with the highest similarity as their neighbors and connect them
accordingly to construct the topological graph. Subsequently,
we proceed to refine the labels for the entire graph. The
underlying concept is that the true latent label of each sample
should align with its nearest neighbors. Therefore, we identify

Benign Attack I Attack II
Given Labels

Benign

Attack I

Attack II

La
te

nt
-re

al
 L

ab
el

s 0.4 0.3 0.3

0.3 0.4 0.3

0.3 0.3 0.4

Symmetric noise

Benign Attack I Attack II
Given Labels

Benign

Attack I

Attack II

La
te

nt
-re

al
 L

ab
el

s 1.0 0.0 0.0

0.6 0.4 0.0

0.6 0.0 0.4

Asymmetric noise

Fig. 3: Illustration of symmetric (left) and asymmetric (right)
scenarios at 60% noise ratio.

these closest neighbors for each instance as its refined label,
while excluding samples previously marked with noisy from
consideration. As a result, we obtain a clean training dataset.
Utilizing this purified training set, we can develop a robust
model for malicious traffic detection.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
framework on two malicious traffic datasets. We also compare
the performance of the state-of-the-art LNL methods with our
work.

A. Datasets

1) Malicious_TLS dataset [16]: We construct a more com-
prehensive dataset, named Malicious_TLS, which encom-
passes 22 types of encrypted malicious traffic. Over a span
of four years, from 2018 to 2021, we captured benign TLS
traffic and encrypted malicious traffic from real edge de-
vices. In comparison to existing malicious traffic datasets, our
dataset includes a more extensive range of malicious traffic
categories and realistic traffic characteristics. With multiple
sources of threat intelligence, we ensure that the labels in
the dataset are accurate. The dataset is publicly available in
https://github.com/gcx-Yuan/Malicious_TLS.

2) BoT-IoT dataset [8]: The BoT-IoT dataset, widely used
in the study of malicious traffic, originates from the Cyber
Range Lab of UNSW Canberra. This dataset is developed on
a simulated environment, featuring network traffic generated
by IoT botnet attacks.

B. Noise Settings

In alignment with BoAu [16], we introduce two distinct
label noise scenarios: symmetric and asymmetric. Fig. 3
displays schematic diagrams of both label noise scenarios at
60% noise rate, respectively. Symmetric noise denotes that
the labels of each traffic class are randomly flipped to other
labels. For instance, some datasets are manually labeled by
analyzing the features, which can easily result in labeling
errors caused by either a lack of expertise or inadvertent
mistakes. These errors can occur across all traffic categories.
However, in asymmetric scenarios, only the labels of malicious
traffic could be wrongly labeled as benign. For example, when
utilizing multiple IDSs to assign labels to samples through a

https://github.com/gcx-Yuan/Malicious_TLS

TABLE I: Comparison with state-of-the-art methods in accu-
racy result (%) on Malicious_TLS

Noise type Sym. Asym.

Methods/Noise rate 20% 40% 60% 80% 20% 40%

Baseline 82.53 80.88 71.66 53.39 78.23 55.50
GCE [10] 77.20 76.82 51.28 41.40 36.25 36.25
RAD [11] 89.28 88.64 88.08 43.25 87.35 53.88

Co-Teaching [5] 79.86 62.77 41.37 36.25 83.01 65.54
DivideMix [3] 82.73 76.18 72.32 47.84 75.96 47.82
UNICON [4] 84.43 82.17 68.82 49.18 77.60 53.68

Deep k-NN [6] 86.64 85.35 84.61 67.54 79.94 68.39

Ours 91.70 90.95 90.48 90.46 90.55 85.85

voting mechanism, the prevailing strategy involves minimizing
false positives to enhance system availability. Consequently, a
large amount of malicious traffic may be incorrectly labeled
as benign, thereby introducing asymmetric noise.

C. Experimental Setup

In the training phase, we utilize an SGD optimizer. The
hyperparameters are set as follows: a learning rate of 0.01, a
batch size of 128, 10 pre-training epochs, and a total of 100
epochs for training. Notably, we choose r = 0.5 to make a
balance, maximizing clean sample coverage while effectively
reducing noise. We set k = 100 to capture comprehensive
local similarity information for each sample, and σ is set
to 0.5 to strike a balance between the two similarity rules.
We mainly use accuracy rates to measure the performance
of all methods. All experiments are performed using PyTorch
1.13.0 and trained on a Linux server equipped with an In-
tel(R) Core(TM) i9-10920X@3.50GHz, 256GB RAM, and an
NVIDIA GeForce RTX 3080 GPU.

D. Comparison Methods

We compare our framework with several popular LNL
methods, all of which utilize an identical malicious traffic
classification network structure. To replicate DivideMix and
UNICON for the malicious traffic dataset, we devise a simple
data augmentation strategy that randomly adds perturbations
to some features or removes features (by setting values to 0).
These methods can be summarized as follows.

Baseline is trained directly using the original training
dataset containing noisy labels.

GCE [10] is a robust loss function for label noise, which
combines the advantages of MAE and CE. Following the
previous work, we set hyperparameter q = 0.7.

RAD [11] is a label calibration framework that relies on
a multi-model voting prediction strategy. A small amount of
clean data is necessary for initializing the framework.

Co-Teaching [5] trains two networks simultaneously, and
cross-training the other to provide potentially clean labeled
data based on the small loss criterion.

DivideMix [3] models the per-sample loss distribution and
dynamically divides the training data into clean (labeled) and
noise (unlabeled), converting the LNL task into an SSL task.

TABLE II: Comparison with state-of-the-art methods in accu-
racy result (%) on BoT-IoT

Noise type Sym. Asym.

Methods/Noise rate 20% 40% 60% 80% 20% 40%

Baseline 83.86 80.67 79.24 51.88 85.57 69.81
GCE [10] 92.87 87.49 83.83 22.20 92.06 11.11
RAD [11] 93.11 92.56 87.04 30.78 91.16 85.05

Co-Teaching [5] 97.36 96.26 95.93 84.34 97.56 82.38
DivideMix [3] 88.63 87.88 84.05 82.12 88.73 82.65
UNICON [4] 87.09 89.57 81.96 73.64 86.80 81.91

Deep k-NN [6] 92.22 91.62 87.64 85.90 91.61 91.17

Ours 98.65 97.39 98.18 97.27 99.00 97.35

20 40 60 80
NR in training set(%)

10

15

20

25

30

35

NR
 in

 p
ur

ifi
ed

 se
t(%

) k = 35
k = 50
k = 100
k = 150

k = 200
k = 250
k = 300
k = 350

20 40 60 80
NR in training set(%)

7

8

9

10

11

12

13

NR
 in

 p
ur

ifi
ed

 se
t(%

)

σ= 0.1
σ= 0.2
σ= 0.3
σ= 0.4
σ= 0.5

σ= 0.6
σ= 0.7
σ= 0.8
σ= 0.9

Fig. 4: Effect of hyperparameter k and fusion coefficient σ
settings on purified dataset noise rate (NR).

UNICON [4] improves the data selection strategy of Di-
videMix, ensuring class balance of the divided labeled data.
Contrastive learning is employed to enhance SSL.

Deep k-NN [6] utilizes a simple k-nearest-neighbor filtering
method on the feature space to remove the mislabeled data.

E. Experimental Results and Analysis

Tables I and II present the classification accuracy of our
method and other state-of-the-art methods on both datasets
from moderate to severe label noise, respectively. It is clear
that our method outperforms all competitors, achieving the
highest classification accuracy and robustness, especially in
highly noisy scenarios. When the noise rate exceeds 60%,
our method maintains an accuracy of over 90% while other
methods experience an obvious degradation in robustness.
Among them, Deep k-NN demonstrates notable effectiveness
on traffic datasets, which proves the significance of neighbor
information for identifying noisy traffic data. However, as the
noise rate increases, the impact of noisy labels on neighbor
information becomes more pronounced. DivideMix and UNI-
CON fail to exhibit exceptional performance on traffic data
due to the lack of reasonable data augmentation schemes. Co-
Teaching demonstrates great performance on BoT-IoT, but its
effectiveness is limited when applied to the real malicious
traffic dataset with a large number of categories. Neither RAD
nor GCE exhibits strong performance in high-noise scenarios.

As shown in Fig. 4, we investigate the impact of varying
hyperparameters, k and σ, on the noise rate within the purified
dataset. For the number of neighbors k, the difference is
negligible when the noise rate is below 70%. However, at high
noise rates, a reduction in k leads to a substantial decrease

40% 60% 80%
Noise Rate

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Malicious_TLS

40% 60% 80%
Noise Rate

80

85

90

95

100 BoT-IoT
w/o NF
w/o LR
w/o FDS
w/o PTS
Ours

Fig. 5: Ablation experiment results on two datasets.

in noise reduction in the purified dataset. The experimental
results also reveal that variations in σ have a certain effect on
the noise rate in the purified dataset and a σ value near 0.5
demonstrates better performance in high-noise scenarios.

F. Ablation Study

In this subsection, we conduct an ablation study to assess
the effectiveness of key components.

• w/o NF - we skip the noisy sample filtering and proceed
directly to label refinement.

• w/o LR - we skip label refinement and train the model
using the filtered dataset.

• w/o FDS - the k-NN topology graph is constructed based
solely on probabilistic trend similarity.

• w/o PTS - the k-NN topology graph is constructed based
solely on feature distance similarity.

As shown in Fig. 5, we assess the performance of our
framework on both datasets after removing essential compo-
nents. The results show that the model’s performance degrades
significantly when the topology graph is constructed directly
on the noisy dataset without prior noise filtering. The label
noise is effectively reduced through preliminary filtering while
preserving a comprehensive and clean sample distribution,
thus enhancing the subsequent label refinement. The most
pronounced performance degradation is observed when the
detection model is only trained on the filtered dataset, em-
phasizing the crucial role of label refinement. The results also
demonstrate a substantial decline in the model’s performance
when relying solely on FDS or PTS. Considering only FDS
neglects the essential information that samples of the same
real class exhibit similar optimization dynamics. Conversely,
relying solely on PTS overlooks high-dimensional information
in the feature space.

V. CONCLUSION

In this paper, we proposed a novel two-stage framework for
malicious traffic detection from low-quality training data. In
the first stage, we filtered out most of the noisy samples from
the training data while ensuring clean samples’ integrity in the
filtered dataset. In the second stage, we presented a double-
constrained similarity rule, which offered a comprehensive
assessment of sample similarity and facilitated the construc-
tion of the topological graph. Subsequently, we utilized the
topological relationships extracted from this graph to refine
the low-quality labels. By performing extensive experiments

on multiple datasets, we demonstrated that our framework
worked significantly better than the state-of-the-art methods.
In the future, we will conduct a more comprehensive study
on the fundamental distinctions between noisy and clean
samples. Additionally, we will validate the generalizability of
our framework over more scenarios.

REFERENCES

[1] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal,
Gang Wang, and Bimal Viswanath. Throwing darts in the dark?
detecting bots with limited data using neural data augmentation. In IEEE
symposium on security and privacy, pages 1190–1206. IEEE, 2020.

[2] Giovanni Apruzzese, Pavel Laskov, and Aliya Tastemirova. Sok: The
impact of unlabelled data in cyberthreat detection. In IEEE European
Symposium on Security and Privacy, pages 20–42. IEEE, 2022.

[3] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learn-
ing with noisy labels as semi-supervised learning. arXiv preprint
arXiv:2002.07394, 2020.

[4] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal
Mian, and Mubarak Shah. Unicon: Combating label noise through
uniform selection and contrastive learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9676–9686, 2022.

[5] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu,
Ivor Tsang, and Masashi Sugiyama. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

[6] Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy
labels. In International Conference on Machine Learning, pages 540–
550. PMLR, 2020.

[7] Hui Tang and Kui Jia. Towards discovering the effectiveness of moder-
ately confident samples for semi-supervised learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14658–14667, 2022.

[8] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin
Turnbull. Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: Bot-iot dataset. Future
Generation Computer Systems, 100:779–796, 2019.

[9] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality manage-
ment on amazon mechanical turk. In Proceedings of the ACM SIGKDD
workshop on human computation, pages 64–67, 2010.

[10] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for
training deep neural networks with noisy labels. Advances in neural
information processing systems, 31, 2018.

[11] Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak,
Sonia Ben Mokhtar, and Lydia Y Chen. Enhancing robustness of on-line
learning models on highly noisy data. IEEE Transactions on Dependable
and Secure Computing, 18(5):2177–2192, 2021.

[12] Cedric Seger. An investigation of categorical variable encoding tech-
niques in machine learning: binary versus one-hot and feature hashing,
2018.

[13] Yubo Hou, Sin G Teo, Zhenghua Chen, Min Wu, Chee-Keong Kwoh,
and Tram Truong-Huu. Handling labeled data insufficiency: Semi-
supervised learning with self-training mixup decision tree for classi-
fication of network attacking traffic. IEEE Transactions on Dependable
and Secure Computing, 2022.

[14] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger,
Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer,
Aaron Courville, Yoshua Bengio, et al. A closer look at memorization
in deep networks. In International Conference on Machine Learning,
pages 233–242. PMLR, 2017.

[15] Ganlong Zhao, Guanbin Li, Yipeng Qin, Feng Liu, and Yizhou Yu.
Centrality and consistency: two-stage clean samples identification for
learning with instance-dependent noisy labels. In European Conference
on Computer Vision, pages 21–37. Springer, 2022.

[16] Qingjun Yuan, Chang Liu, Wentao Yu, Yuefei Zhu, Gang Xiong,
Yongjuan Wang, and Gaopeng Gou. Boau: Malicious traffic detection
with noise labels based on boundary augmentation. Computers &
Security, 131:103300, 2023.

	Introduction
	Related Work
	Noisy Labels in Traffic
	LNL-Based IDS

	The Proposed Framework
	Data Preprocessing
	Noisy Sample Filtering
	Label Refinement
	Feature distance similarity
	Probabilistic trend similarity
	Topology construction

	Experiments
	Datasets
	Malicious_TLS datasetyuan2023boau
	BoT-IoT datasetkoroniotis2019towards

	Noise Settings
	Experimental Setup
	Comparison Methods
	Experimental Results and Analysis
	Ablation Study

	Conclusion
	References

