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Abstract
With the rise of AI-generated audio, watermark-
ing has become widely used for detecting misuse
and protecting intellectual property. However, ad-
versaries may try to remove these watermarks,
making it critical to evaluate how well watermark-
ing schemes withstand removal attacks. Existing
attacks are often impractical: they either notice-
ably degrade perceptual quality or require access
to the watermarking scheme. We propose Dif-
fErase, a black-box watermark removal attack that
assumes no knowledge of the target watermark-
ing scheme while maintaining perceptual quality.
DiffErase perturbs watermarked audio to an in-
termediate diffusion noise level and regenerates
it using a pretrained denoising model, effectively
suppressing watermark signals. Theoretical anal-
ysis and extensive experiments demonstrate that
inaudible audio watermarks are highly vulnerable:
across multiple audio domains, DiffErase consis-
tently removes watermarks while preserving per-
ceptual quality. These findings highlight the need
for future audio watermarking designs to consider
diffusion-based threats. Code and demos are avail-
able at https://differase.github.io/DiffErase/.

1. Introduction
Audio generative models can now produce highly realistic
audio that is indistinguishable to ordinary listeners. This
technology reduces the cost of audio creation and enables
many beneficial applications, but it also raises security risks
related to misinformation, fraud, and public distrust. To
mitigate these risks, proactive defenses such as audio water-
marking have been proposed to support governance of AI-
generated content (Roman et al., 2024; Singh et al., 2024).
By embedding an imperceptible signal into generated audio,
a watermark provides a provenance cue that can be verified
later, enabling detection of AI-generated audio.
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Nevertheless, motivated adversaries may try to remove or
disable watermarks to evade such verification. This makes
it necessary to evaluate the robustness of watermarking
schemes against removal attacks, ensuring they can with-
stand real-world threats. Prior work has studied attacks
against audio watermarking. Some works (Wen et al., 2025;
O’Reilly et al., 2025) apply signal-level transformations
(e.g., additive noise or pitch shifting) or physical-level op-
erations (e.g., re-recording) to disable detection. However,
effective removal under these operations often introduces
audible distortion, limiting their practicality. Other works
explore more targeted strategies. Adversarial attacks (Liu
et al., 2024; Li et al., 2025) optimize perturbations added
to the watermarked waveform to disable detection, but they
typically require query access to detector output. Over-
writing attacks (Yao et al., 2025; Liu et al., 2023b) embed
an additional watermark to interfere with or replace the
original, but they often depend on knowledge of the target
watermarking system, such as the embedding architecture.
These limitations raise a natural question: Can an adver-
sary remove audio watermarks in a black-box setting while
preserving perceptual quality?

In this work, we investigate diffusion-based regeneration
as a black-box watermark removal strategy. The key in-
sight is that watermarking adds imperceptible perturbations
that shift samples away from the natural data distribution,
which detectors are trained to recognize. Diffusion models,
trained to denoise corrupted inputs back to the data manifold,
may naturally suppress these structured perturbations while
preserving perceptual quality. Importantly, this approach
requires no knowledge of the watermarking scheme, making
it fully black-box. This intuition is supported by recent work
on regeneration attacks against image watermarks (Saberi
et al., 2024; Zhao et al., 2024) and diffusion-based defenses
against adversarial examples (Nie et al., 2022; Wu et al.,
2023; Guo et al., 2024), where diffusion suppresses imper-
ceptible perturbations. However, whether diffusion priors
can enable black-box watermark removal for audio water-
marking while preserving quality remains unexplored.

Extending diffusion-based regeneration from images to au-
dio requires careful design choices, as audio admits multiple
representations with different reconstruction constraints. A
direct application of waveform-level diffusion (Kong et al.,
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Figure 1. Overview of DiffErase. Watermarked audio is converted to a mel-spectrogram via STFT, perturbed to an intermediate noise
level t∗ via forward noising, and then denoised back to t = 0. A vocoder reconstructs the attacked audio, which evades watermark
detection. The noise level t∗ controls the trade-off between removal strength and perceptual fidelity.

2020b) leads to over-smoothed content and temporal drift,
degrading perceptual similarity. Alternatively, one can dif-
fuse a linear spectrogram and invert it using the original
phase (Guo et al., 2024), but the regenerated magnitude may
be inconsistent with the preserved phase, producing audible
artifacts. These issues make it challenging to obtain both
strong watermark removal and high fidelity preservation.

We propose DiffErase, a diffusion-based watermark removal
attack operating in a strictly black-box setting. As illus-
trated in Figure 1, DiffErase converts watermarked audio
to a mel-spectrogram using STFT, perturbs it to an inter-
mediate noise level t∗ via the forward noising process, and
applies a pretrained denoising model to regenerate the mel-
spectrogram back to t = 0. A neural vocoder then recon-
structs the waveform from the regenerated mel-spectrogram.
The mel-spectrogram representation preserves salient per-
ceptual structure such as energy contours and temporal
envelopes, while enabling seamless integration with mod-
ern neural vocoders for high-quality reconstruction. We
implement two complementary diffusion backbones: (i)
mel-spectrogram diffusion operating directly in the mel-
spectrogram domain, and (ii) latent diffusion works in a
learned latent space from mel-spectrogram features.

To understand why DiffErase succeeds, we provide a
manifold-based analysis that models watermark embedding
as an off-manifold perturbation. We show that diffusion
reverse dynamics contract the watermark residue along the
denoising trajectory, with an exponential decay bound con-
trolled by the noise level. We evaluate DiffErase across
three audio domains (speech, music, and environmental
sounds) against five state-of-the-art watermarking systems
(AudioSeal (Roman et al., 2024), TimbreWM (Liu et al.,
2023b), WavMark (Chen et al., 2023), Perth (Resemble AI,
2025), and SilentCipher (Singh et al., 2024)). Our results
demonstrate that DiffErase consistently disables watermark
detection while maintaining high perceptual quality, high-
lighting diffusion-based regeneration as a practical threat

that must be addressed in future watermark designs.

Our contribution can be summarized as follows:

• We propose DiffErase, a black-box diffusion-based attack
that removes neural audio watermarks without requiring
knowledge of the watermarking schemes.

• We provide a theoretical analysis explaining why diffusion
dynamics suppress inaudible watermarks, with formal
bounds on watermark contraction.

• We conduct extensive experiments demonstrating that
DiffErase achieves strong removal performance across
diverse audio domains and watermarking systems while
preserving perceptual quality.

2. Related Work
Neural audio watermarking. Audio watermarking em-
beds a hidden signal into an audio carrier for downstream
attribution, such as copyright verification and provenance
tracking. A typical system consists of an embedder that
inserts a watermark (optionally carrying a message) and a
detector that verifies and/or recovers it. Practical methods
must satisfy two key requirements: (i) fidelity, meaning the
watermark is imperceptible to listeners, and (ii) robustness,
meaning the watermark survives common manipulations.

Traditional audio watermarking relies on handcrafted em-
bedding and detection rules, making it difficult to balance
fidelity and robustness. Recent neural approaches adopt
end-to-end training, jointly optimized embedding, detection,
fidelity, and robustness. Existing methods mainly differ in
their embedding strategies. AudioSeal (Roman et al., 2024)
and SilentCipher (Singh et al., 2024) employ a generator–
detector design and embed watermarks into learned repre-
sentations. WavMark (Chen et al., 2023) and IDEAW (Li
et al., 2024) use invertible neural networks to model water-
mark embedding and detection as reversible transformations.
TimbreWM (Liu et al., 2023b) and DeAR (Liu et al., 2023a)
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embed watermark information in the frequency domain.
While these methods demonstrate strong robustness against
common distortions, their vulnerability to diffusion-based
removal attacks remains largely unexplored.

Attacks on audio watermarking. Existing attacks vary
in their assumptions and effectiveness. Signal-level trans-
formations (Wen et al., 2025), such as pitch shifting, fil-
tering, or lossy compression, require no knowledge of the
watermark scheme but often degrade audio quality when
applied strongly enough to remove watermarks. Overwrit-
ing attacks (Yao et al., 2025) embed a second watermark to
interfere with the original, but they typically assume knowl-
edge of the target watermarking architecture. Adversarial
attacks (Liu et al., 2024) formulate watermark removal as an
optimization problem, iteratively crafting perturbations that
fool the detector while preserving perceptual quality. How-
ever, they require query access to the detector, which may
be impractical when the watermarking scheme is private.
These limitations motivate our work: a removal attack that
preserves perceptual quality under minimal assumptions.

Diffusion models for audio. Diffusion models (Ho et al.,
2020; Song et al., 2020) define a forward noising process
and a learned reverse denoising process that maps noise
back to the data distribution. DiffWave (Kong et al., 2020b)
applies this framework to generate high-quality audio from
mel-spectrograms and is commonly used as a neural vocoder.
Conditional diffusion extends this paradigm to controlled
generation, including text-to-audio (Liu et al., 2023c; Yang
et al., 2023) and image-to-audio synthesis (Huang et al.,
2023). Beyond generation, diffusion models have also been
applied to audio restoration, reconstructing missing or cor-
rupted content based on learned priors (Wang et al., 2023).

Our work builds on diffusion-based regeneration, which has
been explored as both a defense and an attack strategy. As
a defense, DiffPure (Nie et al., 2022) and its audio-domain
variants (Wu et al., 2023; Guo et al., 2024) leverage diffu-
sion denoising to suppress adversarial perturbations. As an
attack, Zhao et al. (2024) demonstrate that regeneration can
remove invisible image watermarks by projecting perturbed
samples back onto the natural data manifold. These findings
suggest diffusion regeneration can suppress low-magnitude,
imperceptible signals. However, prior work focuses ex-
clusively on the image domain; whether this vulnerability
extends to audio watermarking remains unexplored.

3. Problem Formulation and Threat Model
3.1. Problem formulation

Let x ∈ RT denote a clean audio waveform. An audio
watermarking system consists of an embedding algorithm
and a detection (or extraction) algorithm.

Embedding. Given an audio signal x, an optional mes-
sage m, and a secret key k ∈ K (equivalently, secret model
parameters), the embedder outputs a watermarked wave-
form:

xw = Embed(x,m, k) ∈ RT . (1)

For message-based schemes, m ∈ {0, 1}L is an L-bit pay-
load. Presence-only schemes embed a zero-bit watermark
for detection, without carrying an explicit message.

Detection and extraction. For message-based schemes,
an extractor recovers the embedded message:

m̂ = Ext(x, k) ∈ {0, 1}L. (2)

If x is watermarked with payload m, then m̂ should match
m; otherwise m̂ is a random bit string.

For presence-only schemes, a detector outputs a detection
score indicating watermark presence:

s = Det(x, k) ∈ [0, 1]. (3)

A binary decision is obtained by thresholding:

Result = I[s ≥ γ] ∈ {0, 1}, (4)

where Result = 1 indicates watermark presence, Result = 0
indicates absence, and γ is a detection threshold.

In this study, we evaluate our attack on five state-of-the-
art open-source neural audio watermarking systems: Au-
dioSeal (Roman et al., 2024), TimbreWM (Liu et al., 2023b),
WavMark (Chen et al., 2023), Perth (Resemble AI, 2025),
and SilentCipher (Singh et al., 2024).

3.2. Threat model

Adversary’s capabilities. We consider a black-box ad-
versary who: (i) has access only to the watermarked audio
xw; (ii) has no knowledge of the watermarking scheme (ar-
chitecture, weights, or hyperparameters), and cannot query
the detector or extractor; (iii) has sufficient computational
resources to process xw using a diffusion model.

Adversary’s objective. The adversary aims to produce a
modified audio x̂ from xw, disabling watermark verification
while preserving perceptual quality. Formally, the attack
succeeds if either

Result(x̂, k) = 0 or Acc
(
Ext(x̂, k),m

)
< η, (5)

where Acc(·, ·) denotes bit accuracy and η is a threshold
below which message recovery is considered failed. Mean-
while, perceptual quality should be maintained:

Q(x̂, xw) ≤ q0, (6)

where Q(·, ·) is a perceptual distance metric and q0 is a
threshold beyond which degradation becomes perceptible.
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4. DiffErase Attack
4.1. Preliminaries: audio diffusion models

Let x0 ∈ Rd denote an audio representation. Diffusion
models (Ho et al., 2020; Song et al., 2020) consist of (i) a
fixed forward process that gradually adds noise and (ii) a
learned reverse process that reconstructs data from noise.

Forward process. The forward process is a fixed Markov
chain with variance schedule {βt}Nt=1. Let αt ≜ 1− βt and
ᾱt ≜

∏t
s=1 αs. The transition is

q(xt | xt−1) = N (xt;
√
αt xt−1, βtI) , (7)

which yields a closed-form marginal distribution:

q(xt | x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
. (8)

Equivalently, xt can be sampled via reparameterization:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (9)

As t increases, xt approaches an isotropic Gaussian.

Reverse process. The reverse process is modeled as a
learned Markov chain:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), Σt) , (10)

where Σt is typically fixed. A standard parameterization
predicts the forward noise using a neural network ϵθ(xt, t):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (11)

The model is trained to minimize:

L = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (12)

4.2. DiffErase: diffusion-based watermark removal

We propose DiffErase, a diffusion-based attack that removes
audio watermarks using a pre-trained diffusion model as a
generative prior. Unlike standard diffusion-based genera-
tion, which starts from pure Gaussian noise, DiffErase fol-
lows an SDEdit-style procedure (Meng et al., 2021) with two
stages: (i) diffusion erasure, which perturbs watermarked
audio to an intermediate noise level, and (ii) semantic re-
construction, which applies the learned reverse dynamics
to recover a clean signal. Crucially, DiffErase requires no
knowledge of the target watermarking systems.

A key challenge is selecting an appropriate audio representa-
tion for diffusion. Waveform-level diffusion produces over-
smoothed content and temporal drift. Linear spectrogram
diffusion generates magnitude inconsistent with the origi-
nal phase, producing audible artifacts(see Appendix C.4 for

empirical comparisons). In contrast, mel-spectrograms cap-
ture salient structure such as energy contours and temporal
envelopes while enabling high-quality reconstruction using
modern vocoders, and we adopt this representation through-
out. We model watermarked audio as xw = x0 + δ, where
x0 is the clean audio and δ is the watermark perturbation.

Phase I: diffusion erasure (forward noising). We dif-
fuse xw to an intermediate step t∗ ∈ {1, . . . , N} using the
closed-form forward marginal in (9):

xt∗ =
√
ᾱt∗ xw +

√
1− ᾱt∗ ϵ, ϵ ∼ N (0, I). (13)

The hyperparameter t∗ controls a trade-off between water-
mark removal and reconstruction fidelity: a larger t∗ injects
more noise, which better suppresses structured watermark
signals but makes reverse reconstruction more challenging.

Phase II: semantic reconstruction (reverse denoising).
Starting from xt∗ , we apply the reverse sampler induced by
the pre-trained diffusion model from t∗ to 0:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtzt, (14)

where zt ∼ N (0, I). We denote the final reconstruction
by x̂0. Since ϵθ is trained on clean audio, the reverse dy-
namics tend to move samples toward high-density regions
of the clean data distribution and suppress off-distribution
perturbations introduced by watermarking. The complete
procedure can be written as

DIFFERASE(xw, t
∗) ≜ REV(xt∗ ; t

∗→0), (15)

where REV(·; t∗→0) denotes reverse sampling as in (14).

Instantiations. We implement two variants of DiffErase,
both operating on mel-spectrograms:

(i) Mel-spectrogram diffusion. We apply DiffErase directly
in the mel-spectrogram domain and reconstruct the wave-
form with a neural vocoder:

x̂0 = VOC
(
DIFFERASE(MEL(xw), t

∗)
)
, (16)

where MEL(·) converts a waveform to a mel-spectrogram
and VOC(·) inverts it back to a waveform.

(ii) Latent diffusion. Following Rombach et al. (2022), we
encode mel-spectrograms into a learned latent space us-
ing a pretrained variational autoencoder (ENC, DEC), apply
DIFFERASE in the latent space, and decode back:

x̂0 = VOC
(
DEC(DIFFERASE(ENC(MEL(xw)), t

∗))
)
.

(17)
Latent diffusion reduces computational cost while achieving
comparable attack performance. We compare these two
variants in Section 5.1.
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4.3. Theoretical analysis

We provide a theoretical justification for DiffErase. We
model an imperceptible watermark as a small perturbation
that moves the signal off the clean-audio manifold, and
show that the diffusion prior suppresses these off-manifold
components along the reverse trajectory.

Definition 4.1 (∆-imperceptibility). Let clean audio x ∈
Rd lie on a low-dimensional manifold M ⊂ Rd. Water-
marked audio is constructed as xw = x + δ, where the
perturbation satisfies ∥δ∥2 ≤ ∆ for a small constant ∆ > 0
to ensure imperceptibility.

Definition 4.2 (τ -margin detection). Let S(·; k) ∈ R denote
a key-dependent detection statistic with key k. A watermark
is detected if S(xw; k) ≥ τ for threshold τ > 0. For
processed audio x̂ derived from a watermarked input, we
say the watermark is removed if S(x̂; k) < τ .

Off-manifold structure. Following Gilmer et al. (2018);
Stutz et al. (2019), small perturbations that do not alter se-
mantics tend to be orthogonal to the data manifold’s tangent
space TxM. While watermarks contain structure to enable
decoding, they are designed to be imperceptible and statisti-
cally distinct from the natural audio distribution. We there-
fore decompose the watermark perturbation δ = δ∥ + δ⊥,
where δ∥ ∈ TxM and δ⊥ ⊥ TxM, and assume the off-
manifold component dominates, i.e., ∥δ⊥∥2 ≫ ∥δ∥∥2.

Diffusion dynamics. We analyze the attack process by
coupling the watermarked trajectory with a reference clean
trajectory. The forward phase diffuses xw to an intermediate
timestep t∗, which scales the signal by

√
ᾱt∗ and injects

Gaussian noise. The reverse phase follows the deterministic
dynamics given by the probability flow ODE with score
model sθ(x, t) ≈ ∇x log pt(x), where pt is the marginal
distribution at diffusion time t.

Lemma 4.3 (Score restores off-manifold deviations). As-
sume the manifold hypothesis and a local Gaussian ap-
proximation of pt, the score function points towards the
high-density region. For a watermarked state xt with off-
manifold component Π⊥(xt)δ, there exists ct > 0 such
that

⟨sθ(xt, t),Π⊥(xt)δ⟩ ≤ −ct∥Π⊥(xt)δ∥22, (18)

Proof sketch. Since pt concentrates near M, the marginal
distribution in the normal direction approximates a Gaussian
centered on the manifold. Consequently, the score function
acts as a linear restoring force opposing off-manifold devia-
tions. A detailed proof is provided in Appendix A.1.

Lemma 4.4 (One-step contraction of watermark residue).
Let xt and xclean

t denote two coupled reverse trajectories ini-
tialized from the watermarked and clean states, respectively.

Define the watermark residue at time t as rt ≜ xt − xclean
t .

Under Lemma 4.3 and the assumption that residue is domi-
nated by its off-manifold component, there exists a contrac-
tion factor ρt ∈ (0, 1) such that

∥rt−1∥2 ≤ ρt∥rt∥2. (19)

Proof sketch. Consider one reverse step for both trajectories
and subtract them to obtain an update rule for rt. The score
difference contributes a drift opposite to the normal compo-
nent of rt (Lemma 4.3). Since the off-manifold component
dominates, this restoring effect yields the contraction in
Eq. (19). A detailed derivation is provided in Appendix A.2.
Theorem 4.5 (Exponential decay of watermark residue).
By combining the forward noising at timestep t∗ with the
one-step contraction in Lemma 4.4, the final residue after
reverse reconstruction satisfies

∥r0∥2 ≤
√
ᾱt∗︸ ︷︷ ︸

forward scaling

·

(
t∗∏
t=1

ρt

)
︸ ︷︷ ︸

reverse contraction

·∆. (20)

Moreover, for any detection threshold τ > 0, there exists
a minimum diffusion steps t∗min such that for all t∗ > t∗min,
the watermark becomes undetectable (S(x̂0; k) < τ ).

Theorem 4.5 shows that DiffErase suppresses watermark
residue via two complementary mechanisms: (i) forward
noising scales the signal component by (

√
ᾱt∗), attenuat-

ing the initial watermark perturbation, and (ii) reverse re-
construction yields geometric contraction with factors (ρt),
filtering out off-manifold components. The full proof and
derivation of t∗min are provided in Appendix A.3.

5. Evaluation
Setup. We implement DiffErase with two diffusion back-
bones: (i) mel-spectrogram diffusion (von Platen et al.,
2022) with BigVGAN (Lee et al., 2023) as the vocoder,
and (ii) latent diffusion on mel-spectrograms (Liu et al.,
2023c) with HiFi-GAN (Kong et al., 2020a) as the vocoder.
Note that the diffusion process operates on integer timesteps
t ∈ {1, . . . , N} (N = 1000 in our implementation), we re-
port the noise level as a normalized ratio t∗ = t/N ∈ (0, 1]
for clarity. Training configurations and implementation de-
tails are provided in Appendix B.1.

Datasets. We evaluate DiffErase across three audio do-
mains: speech, music, and environmental sounds. For
speech, we use the 100-hour subset of LibriSpeech (Panay-
otov et al., 2015). For music, we use a subset of FMA-
small from the Free Music Archive (FMA) (Defferrard et al.,
2016). For environmental sounds, we use Clotho (Drossos
et al., 2020). We randomly sample 100 clips from each
domain for evaluation (more details refer to Appendix B.3).
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Table 1. Comparison with baselines on the speech domain. Left: audio quality metrics (higher is better). Right: watermark detection
measured by TPR@1%FPR (lower is better); ✗ indicates TPR < 0.01.

Type Attack Audio Quality Watermark Detection(TPR@1%FPR ↓)

SQUIM-MOS↑ ViSQOL↑ MUSHRA↑ AudioSeal WavMark TimbreWM Perth SilentCipher

Signal-level

Pitch shift 4.054 1.165 61.66 ✗ ✗ ✗ ✗ ✗
Time stretch 4.072 1.502 66.25 1.00 0.95 1.00 1.00 ✗
Low-pass filter 3.807 3.214 91.73 1.00 1.00 1.00 1.00 0.50
High-pass filter 2.757 1.579 73.20 1.00 1.00 1.00 1.00 0.53
Additive noise 3.062 1.063 25.64 ✗ ✗ ✗ ✗ ✗

Codec MP3 4.503 4.123 96.42 1.00 0.97 1.00 1.00 0.34
EnCodec 4.369 3.708 96.97 1.00 ✗ ✗ 0.50 ✗

Adaptive
Square Attack 3.025 2.567 54.07 ✗ ✗ 0.28 ✗ ✗
DIFFERASE-LATENT 4.214 3.477 87.73 ✗ ✗ ✗ ✗ ✗
DIFFERASE-MEL 4.423 3.961 93.81 ✗ ✗ ✗ ✗ ✗

Target watermarking systems. We evaluate DiffErase
against five state-of-the-art neural audio watermarking sys-
tems: AudioSeal (Roman et al., 2024), TimbreWM (Liu
et al., 2023b), WavMark (Chen et al., 2023), Perth (Resem-
ble AI, 2025), and SilentCipher (Singh et al., 2024). All
systems are configured according to their official releases.

Attack baselines. We compare DiffErase against three cat-
egories of removal attacks. (i) signal-level attacks, like pitch
shifting, time stretching, filtering, and additive Gaussian
noise; (ii) codec-based attacks, including traditional codecs
(e.g., MP3) and neural codecs (e.g., EnCodec); (iii) adaptive
attacks, specifically Square Attack (Andriushchenko et al.,
2020), a query-based adversarial attack. Details of all attack
baselines are provided in Appendix B.2.

Evaluation metrics. We follow the evaluation protocol
of O’Reilly et al. (2025). For watermark removal, we report
the true positive rate at a fixed false positive rate, denoted
as TPR@1%FPR; lower values indicate stronger removal.
To assess perceptual quality after attack, we use both ob-
jective and subjective metrics: (1) SQUIM-MOS (Kumar
et al., 2023), a non-intrusive metric estimating mean opin-
ion score (MOS) on a 1–5 scale without reference audio;
(2) ViSQOL (Chinen et al., 2020), which measures spectro-
temporal similarity between reference and test audio on a
1–5 scale; and (3) MUSHRA, a subjective listening test
where 16 participants rate samples on a 0–100 scale (de-
tails in Appendix B.4). Since attackers have access only to
the watermarked audio xw, we use xw as the reference for
computing perceptual metrics.

5.1. Results and analysis

Watermark removal and quality preservation. Table 1
presents results on speech domain. Signal-level transforma-
tions generally fail to remove watermarks without causing
severe quality degradation. Pitch shifting disables all wa-
termark detectors but severely alters content and timbre,

Table 2. DIFFERASE-MEL performance across domains. Each
entry shows values before/after attack. MUSHRA (higher is bet-
ter) measures subjective audio quality; TPR@1%FPR (lower is
better) measures watermark detectability.

Domain System MUSHRA↑ TPR@1%FPR ↓

Speech

AudioSeal 95.31 / 93.19 1.00 / 0.00
WavMark 98.38 / 96.12 1.00 / 0.00

TimbreWM 95.62 / 95.06 1.00 / 0.00
Perth 92.31 / 90.69 1.00 / 0.00

SilentCipher 96.69 / 94.00 1.00 / 0.00

Music

AudioSeal 95.62 / 87.12 1.00 / 0.00
WavMark 92.75 / 85.31 1.00 / 0.00

TimbreWM 95.00 / 84.06 1.00 / 0.01
Perth 92.62 / 84.94 1.00 / 0.46

SilentCipher 93.31 / 90.12 1.00 / 0.00

Env.

AudioSeal 92.00 / 83.62 1.00 / 0.00
WavMark 94.06 / 87.94 1.00 / 0.00

TimbreWM 93.62 / 86.38 0.97 / 0.00
Perth 90.69 / 85.25 1.00 / 0.19

SilentCipher 94.88 / 89.19 1.00 / 0.00

resulting in a low ViSQOL of 1.165 and MUSHRA of 61.66.
Additive noise also removes all watermarks but introduces
noticeable noise (MUSHRA:25.64). Other signal-level at-
tacks, such as time stretching and frequency filtering, are
largely ineffective, as these watermarking systems are typi-
cally trained to withstand such distortions.

Codec-based attacks demonstrate stronger performance.
Most watermarking methods remain robust to MP3 com-
pression, maintaining TPR@1%FPR ≈ 1.00. EnCodec
achieves partial success against WavMark, TimbreWM, and
SilentCipher, but fails against AudioSeal and Perth. Notably,
both codecs preserve high perceptual quality (ViSQOL
> 3.7 and MUSHRA > 96).

Adversarial attacks such as Square Attack degrade water-
mark detection by optimizing against detector outputs. How-
ever, they also introduce noticeable artifacts, yielding a
MUSHRA score of only 54.07. In contrast, both DiffErase
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Figure 2. Effect of noise level t∗ for DIFFERASE-MEL. Trade-off between audio quality (ViSQOL, left axis) and watermark removal
(FNR = 1− TPR, right axis), evaluated on Perth. Left: Speech. Middle: Music. Right: Environment.

variants suppress watermark detection to TPR = 0 across
all tested watermarking schemes while preserving percep-
tual quality. At noise level t∗ = 0.1, DIFFERASE-LATENT
achieves SQUIM-MOS of 4.214 and ViSQOL of 3.477,
and DIFFERASE-MEL achieves SQUIM-MOS of 4.423 and
ViSQOL of 3.961. Subjective MUSHRA scores further
confirm that DiffErase maintains audio quality better than
competing attacks. More comparison results on music and
environmental sound are provided in Appendix C.1.

Table 2 reports the overall performance of DIFFERASE-MEL
across all three domains. DiffErase consistently reduces
TPR@1%FPR from 1.00 to near 0.00 for most watermark-
ing systems, with limited perceptual degradation (MUSHRA
drops of 2–10 points). The commercial watermark Perth
exhibits stronger robustness: while DiffErase fully removes
Perth watermarks on speech (TPR = 0.00), residual detec-
tion remains on music (TPR = 0.46) and environmental
sounds (TPR = 0.19). We analyze watermark strength by
measuring the ℓ2 distance between clean and watermarked
audio. As shown in Figure 3, Perth induces substantially
larger perturbations than all other watermarking schemes,
approximately 4–10× higher, which explains its robustness
to DiffErase and its impact on perceptual quality.

Effect of noise level between watermark removal and
audio quality. We evaluate how the noise level t∗ controls
the trade-off between watermark removal and perceptual
quality. As illustrated in Section 4.3 (Theorem 4.5), a thresh-
old t∗min exists above which imperceptible watermarks can
be removed. Larger t∗ provides stronger denoising sup-
pression of the embedded signal, improving removal but
degrading fidelity. Smaller t∗ preserves perceptual qual-
ity but cannot effectively reduce watermark. We use Perth
as the target since it is the most robust watermark in our
evaluation and induces the largest perturbation, as shown in
Figure 3. Result are reproted for DIFFERASE-MEL; results
of DIFFERASE-LATENT are provided in Appendix C.2.

Figure 2 plots ViSQOL (left axis) and FNR = 1 − TPR
(right axis) as t∗ increases from 0.01 to 0.2. Across
all domains, increasing t∗ improves watermark removal
(higher FNR) while gradually reducing audio quality (lower
ViSQOL). On speech, Perth becomes undetectable at t∗ ≥

SilentCipher WavMark TimbreWM AudioSeal Perth0

500

1000

1500

2000

L2
 d

ist
an

ce

Speech Env Music

Figure 3. The ℓ2 distance between clean and watermarked
audio across five watermarking methods on three domains. Perth
embeds substantially stronger perturbations.

0.10 (FNR ≈ 1) while quality remains high (ViSQOL
> 3.5). On music and environmental sounds, FNR increases
substantially with t∗ but cannot be fully removed even at
t∗ = 0.20. This is consistent with our earlier observa-
tion that Perth embeds a stronger watermark signal, which
degrades perceptual quality but enhances robustness. It re-
quires a higher diffusion noise level to completely eliminate.

Spectrogram visualization. Figure 4 visualizes spectro-
grams for five audio examples processed by DIFFERASE-
MEL at t∗ = 0.1. The top row shows original (clean) audio,
the middle row shows watermarked samples, and the bot-
tom row shows DiffErase outputs. Different watermarking
schemes embed watermarks into different time–frequency
regions (highlighted by yellow boxes). After DiffErase,
these structured patterns are visibly attenuated or removed.

The watermark patterns vary across schemes. AudioSeal,
TimbreWM, and Perth embed repeated patterns to ensure
robustness, introducing visible band-like structures. These
structures become much less pronounced after DiffErase.
WavMark embeds small distortions in low-energy regions,
making the watermark less perceptible but still detectable.
DiffErase disrupts these localized patterns as well. SilentCi-
pher shows only subtle and spatially spread perturbations
with less obvious spectrogram patterns, which explains its
lower robustness in our evalution. Across all samples, Dif-
fErase eliminates watermark patterns while preserving the
main acoustic structure, though some fine-grained details
become slightly smoothed. This smoothing is controlled by
t∗: smaller t∗ values better preserve details but may leave
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Original Original Original Original Original

AudioSeal WavMark TimbreWM Perth SilentCipher

DiffErase DiffErase DiffErase DiffErase DiffErase

Figure 4. Spectrogram visualization. Top: original audio. Middle: watermarked audio. Bottom: after DIFFERASE-MEL (t∗ = 0.1).
Watermark patterns (middle row) are attenuated while acoustic content is preserved.

residual watermark evidence, while larger values improve
removal at the cost of additional smoothing.

Table 3. Ablation study on speech. Full results on music and
environment are provided in Appendix C.3.

Method TimbreWM Perth WavMark
(i) mel-to-waveform
Griffin-Lim algorithm (GLA) only 1.00 1.00 1.00
DIFFERASE-MEL + GLA 0.00 0.18 0.00
DIFFERASE-LATENT + GLA 0.00 0.00 0.00

(ii) diffusion sampler
DIFFERASE-MEL (DDPM) 0.00 0.00 0.00
DIFFERASE-MEL (DDIM) 0.00 0.04 0.00
DIFFERASE-LATENT (DDPM) 0.00 0.00 0.00
DIFFERASE-LATENT (DDIM) 0.00 0.02 0.00

Ablation study. We conduct ablations to verify that wa-
termark removal is primarily driven by the diffusion process
rather than other pipeline components. We evaluate on three
robust watermarking systems (TimbreWM, Perth, and Wav-
Mark), excluding AudioSeal and SilentCipher because their
detection fails under waveform→spectrogram→waveform
conversion alone.

To isolate the contribution of DiffErase, we reconstruct
waveforms using the Griffin–Lim algorithm (GLA) (Griffin
& Lim, 1984), which introduces minimal spectral distortion.
As shown in Table 3, Griffin–Lim reconstruction alone does
not affect watermark detection (TPR@1%FPR = 1.00 for
all systems). In contrast, adding diffusion perturbations
and denoising at t∗ = 0.1 substantially degrades detection:

DIFFERASE-MEL reduces TimbreWM and WavMark to
TPR = 0.00 and Perth to 0.18, while DIFFERASE-LATENT
removes all watermarks completely. The stronger removal
of DIFFERASE-LATENT is consistent with the additional
information bottleneck introduced from the VAE encoder.

We also compare diffusion samplers. At the same noise
level t∗ = 0.1, DDPM shows more effective removal than
DDIM (50-step schedule), even though DDIM provides a
faster processing speed. This suggests that the fine-grained
denoising trajectory better suppresses watermark residues.

6. Conclusion
We propose DiffErase, a black-box attack that removes au-
dio watermarks by leveraging diffusion models as gener-
ative priors. Unlike existing attacks, DiffErase requires
neither detector queries nor knowledge of the watermark-
ing schemes. Our theoretical analysis shows that diffusion
dynamics suppress watermarks by contracting off-manifold
perturbations along the reverse trajectory. Extensive ex-
periments across three audio domains and five state-of-the-
art watermarking systems demonstrate that DiffErase con-
sistently removes watermarks while preserving perceptual
quality. Our findings reveal a fundamental vulnerability
in current audio watermarking designs: imperceptibility,
while essential for practical deployment, inherently limits
robustness against diffusion-based regeneration. This high-
lights the need for future watermarking designs to explicitly
account for diffusion-based threats.
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Impact Statement
This paper studies the vulnerability of neural audio water-
marking by presenting a black-box removal attack based on
diffusion regeneration. The positive impact is to support
more realistic robustness evaluation and facilitate stronger
watermark designs. However, the proposed attack could po-
tentially be misused to destroy provenance tracking or copy-
right protection. We are committed to responsible disclosure
and encourage deployment-side mitigations and benchmark-
ing protocols that account for diffusion-based threats.
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A. Proofs in Section 4.3
A.1. Proof of Lemma 4.3

Lemma A.1 (Score restores off-manifold deviations). Assume the manifold hypothesis and a local Gaussian approximation
of pt, the score function points towards the high-density region. For a watermarked state xt with off-manifold component
Π⊥(xt)δ, there exists ct > 0 such that

⟨sθ(xt, t),Π⊥(xt)δ⟩ ≤ −ct∥Π⊥(xt)δ∥22, (21)

Proof. We rely on the geometric interpretation of the score function established in prior works (Yoon et al., 2021; Chung et al.,
2022). Under the manifold hypothesis, the diffusion marginal pt concentrates around M and can be locally approximated as
a Gaussian centered at the manifold. As a result, for xt close to M, the score has a normal component that points back
toward the manifold. Concretely, we use the approximation

Π⊥(xt)sθ(xt, t) ≈ − 1

σ2
t

(xt −ΠM(xt)), (22)

where ΠM(xt) is the (local) projection of xt onto M and σt is the noise scale at time t.

The watermark perturbation δ is modeled as predominantly off-manifold (as justified in Sec. 4.3), the deviation from the
manifold is dominated by the watermark component: xt −ΠM(xt) ≈ Π⊥(xt)δ. Substituting this into the inner product, we
obtain:

⟨sθ(xt, t),Π⊥(xt)δ⟩ = ⟨Π⊥(xt)sθ(xt, t),Π⊥(xt)δ⟩ (23)

≈
〈
− 1

σ2
t

Π⊥(xt)δ,Π⊥(xt)δ

〉
(24)

= − 1

σ2
t

∥Π⊥(xt)δ∥22. (25)

Letting ct = 1/σ2
t > 0. Replacing the approximation by an inequality to account for local modeling error gives (21).

A.2. Proof of Lemma 4.4

Lemma A.2 (One-step contraction of watermark residue). Let xt and xclean
t denote two coupled reverse trajectories

initialized from the watermarked and clean states, respectively. Define the watermark residue at time t as rt ≜ xt − xclean
t .

Under Lemma 4.3 and the assumption that residue is dominated by its off-manifold component, there exists a contraction
factor ρt ∈ (0, 1) such that

∥rt−1∥2 ≤ ρt∥rt∥2. (26)

Proof. We analyze the deterministic probability flow ODE (as an idealized model for the reverse dynamics). Consider a
discretized reverse step from time t to t− 1 using a first-order Euler solver:

xt−1 ≈ xt + ηtsθ(xt, t), (27)

where ηt > 0 is an effective step size determined by the specific scheduler. Applying to both the watermarked trajectory xt

and the clean trajectory xclean
t using the same step size yields

rt−1 = xt−1 − xclean
t−1 (28)

≈ (xt + ηtsθ(xt, t))− (xclean
t + ηtsθ(x

clean
t , t)) (29)

= rt + ηt
(
sθ(xt, t)− sθ(x

clean
t , t)

)
. (30)

Next, we relate the score difference to the residue. Lemma 4.3 implies that, in normal directions near M, the score acts as a
restoring force. Under a first-order local linearization around the clean trajectory, we approximate

sθ(xt, t)− sθ(x
clean
t , t) ≈ −ct(xt − xclean

t ) = −ctrt, (31)
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where ct ≈ 1/σ2
t > 0 determines the strength of the restoring force derived in Lemma 4.3.

Substituting this relationship into Eq. (30):

rt−1 ≈ rt − ηtctrt = (1− ηtct)rt. (32)

Taking the Euclidean norm, we obtain:
∥rt−1∥2 ≈ |1− ηtct|∥rt∥2. (33)

Define the decay factor ρt = |1− ηtct|. In standard diffusion schedules, the step size ηt satisfies 0 < ηtct < 1 (typically
0 < ηtct < 2). Therefore, there exists ρt ∈ (0, 1) such that:

∥rt−1∥2 ≤ ρt∥rt∥2. (34)

A.3. Proof of Theorem 4.5

Theorem A.3 (Exponential decay of watermark residue). By combining the forward noising at timestep t∗ with the one-step
contraction in Lemma 4.4, the final residue after reverse reconstruction satisfies

∥r0∥2 ≤
√
ᾱt∗︸ ︷︷ ︸

Forward scaling

·

(
t∗∏
t=1

ρt

)
︸ ︷︷ ︸

Reverse contraction

·∆. (35)

Moreover, for any detection threshold τ > 0, there exists a minimum diffusion steps t∗min such that for all t∗ > t∗min, the
watermark becomes undetectable (S(x̂0; k) < τ ).

Proof. We first analyze the residue at the attack timestep t∗. Let x0 denote the clean audio and xw
0 = x0 + δ the

watermarked audio, with ∥δ∥2 ≤ ∆. We adopt a coupled forward process where both trajectories share the same Gaussian
noise ϵ ∼ N (0, I). At timestep t∗,

xt∗ =
√
ᾱt∗x0 +

√
1− ᾱt∗ϵ, (36)

xw
t∗ =

√
ᾱt∗(x0 + δ) +

√
1− ᾱt∗ϵ. (37)

Define the residue at t∗ as rt∗ ≜ xw
t∗ − xt∗ . Then

rt∗ =
√
ᾱt∗δ. (38)

Consequently, the norm of the perturbation at t∗ is scaled by the signal decay factor:

∥rt∗∥2 =
√
ᾱt∗ ∥δ∥2 ≤

√
ᾱt∗ ∆. (39)

Applying Lemma 4.4 iteratively from t∗ down to 0 yields

∥r0∥2 ≤ ρ1∥r1∥2 ≤ · · · ≤

 t∗∏
j=1

ρj

 ∥rt∗∥2. (40)

Substituting (39) gives

∥r0∥2 ≤
√
ᾱt∗

 t∗∏
j=1

ρj

∆. (41)
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Bound on diffusion steps t∗min. To derive the lower bound on t∗ required for watermark removal S(x̂0; k) < τ , we link
the residue norm to the detection statistic. Assume the detection function S(·; k) is L-Lipschitz continuous. For clean audio
(no watermark), S(xclean; k) ≈ 0. For the reconstructed output x̂0, we have

S(x̂0; k) ≤ |S(x̂0; k)− S(xclean; k)|+ S(xclean; k)

≤ L∥x̂0 − xclean∥2 + S(xclean; k)

≈ L∥r0∥2

≤ L∆
√
ᾱt∗

(
t∗∏
t=1

ρt

)
, (42)

where the final inequality uses (41).

Let ρ̄ ≜ maxt∈{1,...,t∗} ρt < 1, so that
∏t∗

t=1 ρt ≤ ρ̄t
∗
. A sufficient condition for S(x̂0; k) < τ is therefore

L∆
√
ᾱt∗ ρ̄

t∗ < τ. (43)

Taking logarithms yields

ln(L∆) +
1

2
ln ᾱt∗ + t∗ ln ρ̄ < ln τ. (44)

Since ᾱt∗ ∈ (0, 1) and ρ̄ ∈ (0, 1), their logarithms are negative. Rearranging gives the equivalent condition

t∗| ln ρ̄|+ 1
2 | ln ᾱt∗ | > ln

(
L∆

τ

)
. (45)

Because ᾱt∗ decreases monotonically with t∗, both terms on the left-hand side increase with t∗. Hence there exists a
minimal t∗min satisfying (45), and any t∗ ≥ t∗min is sufficient to ensure S(x̂0; k) < τ under the stated assumptions.

B. Implementation Details
B.1. DiffErase instantiations

We implement DiffErase with two complementary backbones:

DIFFERASE-MEL. This variant is built on DIFFUSER library (von Platen et al., 2022) and performs diffusion directly in
the mel-spectrogram domain. We use a UNet2DModel as the denoiser, treating the mel-spectrogram as a single-channel
image. The mel-spectrogram is computed with 80 mel bins. For waveform reconstruction, we use BigVGAN (Lee et al.,
2023) (bigvgan v2 22khz 80band 256x) as the vocoder.

DIFFERASE-LATENT. This variant is built on the AudioLDM pipeline (Liu et al., 2023c). Mel-spectrograms (64 mel
bins) are first encoded into a latent space using a pretrained AutoencoderKL with latent channel dimension of 8. Diffusion
is then performed in the VAE latent space using a UNet with the following configuration: image size 64, base channels
128, 2 residual blocks per stage, channel multipliers [1, 2, 3, 5], and attention at resolutions {8, 4, 2}. The reconstructed
mel-spectrogram is converted back to waveform using HiFi-GAN (Kong et al., 2020a).

B.2. Baseline atacks

Signal-level attacks. Following the setting in O’Reilly et al. (2025), pitch shifting uses a random shift in [−1, 1] semitones,
and time stretching applies a random speed factor in [0.95, 1.05]. For frequency filtering, we apply a low-pass filter with a
4000 Hz cutoff and a high-pass filter with a 500 Hz cutoff. Additive noise is Gaussian with standard deviation σ = 0.01.

Codec-based attacks. We evaluate a traditional codec and a neural-based codec. MP3 compression is performed using
FFmpeg at 32 kbps. EnCodec (Défossez et al., 2022) uses 24 kbps bandwidth.
Adaptive attack. We implement Square attack (Andriushchenko et al., 2020) in the spectrogram domain following Liu
et al. (2024). For speech, we use a query budget of 10,000 and perturbation bound ϵ = 0.02. For music and environmental
sounds, we found ϵ = 0.02 insufficient for successful attacks and increased it to ϵ = 0.2.
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Table 4. Comparison with baselines on the music domain. Left: audio quality metrics (higher is better). Right: watermark detection
measured by TPR@1%FPR (lower is better); ✗ indicates TPR < 0.01.

Type Attack Audio Quality Watermark Detection(TPR@1%FPR ↓)

ViSQOL↑ MUSHRA↑ AudioSeal WavMark TimbreWM Perth SilentCipher

Signal-level

Pitch shift 4.061 78.33 ✗ ✗ ✗ 0.10 ✗
Time stretch 4.109 80.16 ✗ 0.83 0.87 1.00 ✗
Low-pass filter 3.203 87.28 1.00 1.00 1.00 1.00 0.51
High-pass filter 3.673 78.61 1.00 1.00 1.00 0.99 0.58
Additive noise 2.778 25.40 0.43 ✗ 0.12 0.43 ✗

Codec MP3 4.505 94.39 1.00 0.84 0.94 1.00 0.42
EnCodec 4.321 88.66 0.99 ✗ ✗ 0.89 ✗

Adaptive
Square Attack 2.960 31.24 0.18 ✗ 0.36 0.21 ✗
DIFFERASE-LATENT 4.163 91.20 ✗ ✗ 0.01 0.35 ✗
DIFFERASE-MEL 3.938 86.31 ✗ ✗ 0.01 0.46 ✗

Table 5. Comparison with baselines on the environment sound domain. Left: audio quality metrics (higher is better). Right: watermark
detection measured by TPR@1%FPR (lower is better); ✗ indicates TPR < 0.01.

Type Attack Audio Quality Watermark Detection(TPR@1%FPR ↓)

ViSQOL↑ MUSHRA↑ AudioSeal WavMark TimbreWM Perth SilentCipher

Signal-level

Pitch shift 4.061 76.20 ✗ ✗ ✗ 0.03 ✗
Time stretch 4.347 87.06 ✗ 0.85 0.97 1.00 ✗
Low-pass filter 3.102 92.53 1.00 0.94 0.13 1.00 0.32
High-pass filter 3.706 84.80 1.00 1.00 0.97 1.00 0.59
Additive noise 1.443 31.43 0.34 ✗ 0.11 0.39 ✗

Codec MP3 3.979 97.21 1.00 0.65 0.82 0.99 0.22
EnCodec 4.334 94.81 0.96 ✗ ✗ 0.90 ✗

Adaptive
Square Attack 2.365 58.20 0.11 ✗ 0.06 0.38 ✗
DIFFERASE-LATENT 3.308 87.07 ✗ ✗ ✗ 0.23 ✗
DIFFERASE-MEL 3.952 86.48 ✗ ✗ ✗ 0.19 ✗

B.3. Dataset details

We evaluate DiffErase across three audio domains to assess generalization. For speech, we use LibriSpeech (Panayotov et al.,
2015), an English corpus derived from audiobooks containing 1,000 hours of speech. We train on the train-clean-100 subset
(100 hours) and evaluate on 100 randomly sampled clips from test-clean. For environmental sounds, we use Clotho (Drossos
et al., 2020), an audio captioning dataset. We discard the captions and reserve 100 samples for evaluation, using the reminder
for training. For music, we use FMA-small (Defferrard et al., 2016) from the Free Music Archive, which contains songs
across various genres. We use all samples for training except 100 samples for evaluation.

B.4. Subjective listening test

We conduct a MUSHRA listening test following ITU-R BS.1534 to evaluate perceptual quality. We randomly sample 5
audio clips per domain and include all attack samples in each trial. 18 participants completed the study, filtered unreliable
evaluations using low-quality anchor samples, and 16 valid participants were retained for analysis. Participants rate the
quality of processed audio samples on a scale of 0 to 100, with watermarked audio provided as the reference. Evaluations
are conducted using the open-source webMUSHRA platform (Schoeffler et al., 2018) locally.

C. Additional experimental results
C.1. Comparison with baselines on music and environmental sounds

Table 4 and Table 5 present comparison results on the music and environmental sound domains, respectively. The overall
performance is consistent with the speech domain.

Signal-level attacks show limited effectiveness. Pitch shifting removes most watermarks but degrades quality (MUSHRA
of 78.33 on music and 76.20 on environmental). Additive noise achieves partial removal but introduces severe distortions
(MUSHRA of 25.40 on music and 31.43 on environment). Time stretching and frequency filtering remains largely ineffective.
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Figure 5. Effect of noise level t∗ for DIFFERASE-LATENT. Trade-off between audio quality (ViSQOL, left axis) and watermark removal
(FNR = 1− TPR, right axis), evaluated on Perth. Left: Speech. Middle: Music. Right: Environment.

Table 6. Ablation study on music.

Method TimbreWM Perth WavMark
(i) mel-to-waveform
Griffin-Lim algorithm (GLA) only 1.00 1.00 1.00
DIFFERASE-MEL + GLA 0.00 0.46 0.00
DIFFERASE-LATENT + GLA 0.00 0.00 0.00

(ii) diffusion sampler
DIFFERASE-MEL (DDPM) 0.01 0.46 0.00
DIFFERASE-MEL (DDIM) 0.02 0.75 0.00
DIFFERASE-LATENT (DDPM) 0.01 0.35 0.00
DIFFERASE-LATENT (DDIM) 0.02 0.44 0.00

Table 7. Ablation study on environment sound.

Method TimbreWM Perth WavMark
(i) mel-to-waveform
Griffin-Lim algorithm (GLA) only 0.89 1.00 1.00
DIFFERASE-MEL + GLA 0.00 0.58 0.00
DIFFERASE-LATENT + GLA 0.00 0.00 0.00

(ii) diffusion sampler
DIFFERASE-MEL (DDPM) 0.00 0.19 0.00
DIFFERASE-MEL (DDIM) 0.00 0.34 0.00
DIFFERASE-LATENT (DDPM) 0.00 0.23 0.00
DIFFERASE-LATENT (DDIM) 0.00 0.23 0.00

Codec-based attacks preserve high quality, but fail to remove watermarks. MP3 compression maintains MUSHRA above
94 but fails to remove most watermarks. EnCodec successfully removes WavMark, TimbreWM, and SilentCipher while
preserving audio quality, but fails against AudioSeal and Perth.

Even though Square attack shows relatively good removal performance on speech, it fails on music and environmental
sounds despite increasing the perturbation bound to ϵ = 0.2, which causes substantial quality degradation (MUSHRA of
31.24 on music and 58.20 on environment).

DiffErase achieves strong watermark removal across both domains while preserving competitive quality. On music,
DIFFERASE-LATENT achieves ViSQOL of 4.16 and MUSHRA of 91.20, removing all watermarks except Perth (TPR =
0.35). On environmental sounds, DIFFERASE-MEL achieves ViSQOL of 3.95 and MUSHRA of 86.48. Perth remains
partially detectable owing to its stronger embedded perturbations observed in Figure 3.

C.2. Noise level trade-off for DIFFERASE-LATENT

Figure 5 shows the quality-removal trade-off for DIFFERASE-LATENT. The trends are similar: increasing t∗ improves
watermark removal (higher FNR) while reducing audio quality (lower ViSQOL). On speech, Perth becomes undetectable at
t∗ ≥ 0.05. On music and environmental sounds, complete removal requires higher noise levels. Compared to DIFFERASE-
MEL, DIFFERASE-LATENT achieves comparable removal at similar noise levels but with slightly lower ViSQOL, likely due
to the additional compression from the VAE encoder.

C.3. Ablation study on music and environmental sounds

Tables 6 and 7 extend the ablation study to the music and environmental sound domains. Consistent with the speech
results, Griffin–Lim reconstruction alone does not remove watermarks (TPR = 1.00 for most systems). Adding diffusion
substantially improves removal. DDPM consistently outperforms DDIM across both domains, particularly for Perth. On
music, DDPM reduces Perth to TPR = 0.46 while DDIM only achieves 0.75. This confirms that the finer-grained denoising
trajectory of DDPM better suppresses watermark residues.

C.4. Ablation on attack representation

We compare DiffErase operating on mel-spectrograms against alternative representations: (i) waveform using Dif-
fWave (Kong et al., 2020b), and (ii) linear spectrogram with phase preservation following WavePurifier (Guo et al.,
2024).
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Table 8. Ablation on audio representation. We compare DiffErase with diffusion on different representations.

Representation Audio Quality Watermark Detection(TPR@1%FPR ↓)

SQUIM-MOS↑ ViSQOL↑ MUSHRA↑ AudioSeal WavMark TimbreWM Perth SilentCipher

Waveform 2.541 1.996 71.21 ✗ ✗ ✗ ✗ ✗
Linear spectrogram 3.825 3.857 79.66 1.00 1.00 1.00 0.97 0.35
Mel-spectrogram 4.423 3.961 93.81 ✗ ✗ ✗ ✗ ✗
Mel-latent 4.214 3.477 87.73 ✗ ✗ ✗ ✗ ✗

As shown in Table 8, waveform diffusion successfully remove watermark but produces low-quality audio (SQUIM-MOS
of 2.541, MUSHRA of 71.21). The high dimensionality of raw waveforms leads to over-smoothed content and temporal
drift, failing to preserve perceptual details. This is evident in Figure 6(c), where harmonic structures are blurred, and
in Figure 7(b), where the reconstructed waveform significantly deviates from the original envelope. Linear spectrogram
diffusion improves quality but remains inferior to the mel-spectrogram. Its reconstruction relies on reusing the original
phase, but the regenerated magnitude may be inconsistent with the preserved phase, producing audible artifacts, as shown
in Figure 6(d) and Figure 7(c). In contrast, mel-spectrogram diffusion achieves the best trade-off: complete watermark
removal while maintaining high audio quality. As shown in Figure 6(e), DiffErase preserves the main spectral structure while
removing watermark perturbations, enabling stable diffusion and high-quality reconstruction via modern neural vocoders.
This is further confirmed in Figure 7(d), where the reconstructed waveform closely follows the original temporal envelope.

(a) Original (b) Watermarked (c) DiffWave (d) WavePurifier (e) DiffErase

Figure 6. Mel-spectrogram visualization across different attack representations. DiffWave (c) over-smooths harmonic details. WavePuri-
fier (d) introduces audible artifacts. DiffErase (e) preserves the spectral structure while removing watermark perturbations.

Watermarked

(a) Watermarked

DiffWave
Watermarked

(b) DiffWave

WavePurifier
Watermarked

(c) WavePurifier

DiffErase
Watermarked

(d) DiffErase

Figure 7. Waveform visualization across different attack representations. Red waveforms show reconstructed audio, and gray shows
input watermarked audio. DiffErase (d) closely matches the original temporal envelope.
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