
Gedss: A Generic Framework to Enhance Model
Robustness for Intrusion Detection on Noisy Data

Lingfeng Yao∗, Anran Hou∗, Weina Niu∗†, Qingjun Yuan‡, Junpeng He∗ and Yanfeng Zhang§
∗School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

†Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
‡Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, China

§Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou, China

Abstract—Training a deep neural network-based intrusion
detection system requires a large amount of clean labeled data,
yet malicious traffic datasets are usually collected from the
open-source web community or simulated attack environments,
which inevitably contain a large portion of unreliably labeled
traffic data. The state-of-the-art methods dealing with label noise
combine sample separation and semi-supervised learning (SSL),
however, they are hardly usable in the traffic field because traffic
data lacks a reasonable data augmentation like image data. To
this end, we propose a generic label-noise-resistant framework
for malicious traffic detection called Gedss. Unlike previous
approaches focusing on data augmentation, our approach im-
proves model performance by enhancing the quality of sample
selection and model decision boundaries. The framework contains
two parts: sample selection and semi-supervised learning. The
sample selection method is presented to divide the original traffic
instances into clean ones (labeled set) and noisy ones (unlabeled
set). We fit a Jensen-Shannon divergence-based sample prediction
loss to a mixture model as the criterion, and the threshold is au-
tomatically and dynamically adjusted, which makes our selection
mechanism adaptive to various malicious traffic datasets. Besides,
a semi-supervised learning method is designed, which uses two
networks to jointly predict the pseudo label of the unlabeled set.
Considering the class imbalance of divided labeled data, the idea
of fine-tuning the models with all data is presented to improve
the performance of SSL. Extensive experimental results under
different label noise scenarios demonstrate that our approach
outperforms state-of-the-art methods.

Index Terms—Label noise, Semi-supervised learning, Intrusion
detection, Deep learning, Unreliable data

I. INTRODUCTION

The network intrusion detection system (NIDS) is an ef-
fective method to discover malicious activities from network
traffic. However, the traditional rule-based network intrusion
detection system needs to extract features manually and has
a high false positive rate. NIDS based on deep learning (DL)
could automatically extract features and learn complicated pat-
terns from traffic data [1]. These DL-based methods perform
well with massive clean labeled instances. However, public
datasets for intrusion detection systems obtained from open-
source web communities or simulated attack environments
[2] [3] are hard to be clean, where labels are generated
through manual or machine annotation [4] [5]. The manual

This work was supported by the Opening Project of Intelligent Policing Key
Laboratory of Sichuan Province (No. ZNJW2023KFQN003) and the National
Key Research and Development Program of China under Grant 2023QY0101.
(Corresponding author: Weina Niu.)

annotation may result in errors and inconsistencies because
of individual carelessness, while machine annotation could
be inaccurate due to the complexity of the datasets or the
limitations of the annotation algorithms. These incorrectly
labeled data, i.e., label noise, may affect the generalization
performance of NIDS, as deep neural networks (DNNs) are
capable of memorizing noise data [6].

Many studies have been proposed to solve the label noise
problem. Xu et al. [4] proposed a label noise reduction
framework for malware detection by applying an unsupervised
outlier detection method to the sample feature vectors. Zhao et
al. [7] presented a voting-based label proofreading framework
for IoT intrusion detection datasets. However, this ensemble
model relied on a small number of clean data, which did not
satisfy the realistic scenarios. The most popular idea is to
separate the noisy and clean samples based on the divergence
of their prediction loss, thus transforming the learning with
noisy labels (LNL) task into a semi-supervised learning (SSL)
task. These methods [8]–[10] showed the effectiveness of the
image datasets. However, they are inappropriate for traffic
data since the traffic data lacks explainable data augmentation
methods like image random cropping and rotation.

To apply the combination of sample separation and semi-
supervised learning to the traffic domain, we propose Gedss, a
label-noise-resistant framework for malicious traffic detection.
Unlike previous methods that focused on improving model
performance by data augmentation, our approach prioritizes
refining sample selection and learning the distribution of
difficult samples to enhance the model’s decision boundaries.
First, we divide the training set into two subsets and train two
models, allowing them to cross-predict in order to mitigate
the impact of noisy labels and prevent confirmation errors.
To improve the quality of selected data, these two subsets are
divided into labeled and unlabeled sets by a dynamic threshold.
After that, a semi-supervised learning method is presented to
obtain a malicious traffic classifier by utilizing labeled and
unlabeled data. Our main contributions are summarized as
follows:

• We introduce Cross-Divide, an automatic data selection
method. It effectively divides noisy data from clean
data by dynamically adjusting the threshold and refining
sample selection strategies.

• A semi-supervised learning method for joint prediction is

Noisy data

Clean data

Train

Train

Calculate Loss

Joint-SSLCross-Divide

GMM

Subset2

Subset1

-- Clean Label

-- Noisy Label

Unlabeled

Labeled Subset4

Unlabeled

Labeled Subset3

Network2 Network2

Network1 Network1

Fig. 1. Overview of the proposed Gedss. Network1 and Network2 are trained with Subset1 and Subset2, respectively. Then, a Cross-Divide part is designed,
where these two models cross-predict another subset and utilize the Gaussian mixture model (GMM) to model the Jensen-Shannon (JS) prediction loss for
each sample. Based on this loss, this sample is sorted into labeled or unlabeled datasets. Furthermore, a Joint-SSL part is proposed, where the labeled datasets
named Subset3 and Subset4 are used for supervised learning to optimize the corresponding models, whereas the unlabeled datasets are jointly predicted by
both models for semi-supervised learning.

proposed to train a malicious traffic classifier with labeled
and unlabeled data. Moreover, model fine-tuning using
all data is presented to address the class imbalance of
divided clean data and improve the performance of semi-
supervised learning.

• The effectiveness of our framework is validated on
three popular malicious traffic datasets. Our approach
outperforms state-of-the-art methods by achieving an
average accuracy increase of more than 10% on the
NSL-KDD, BoT-IoT and CICIDS2017 datasets. In high
noise scenarios (with over 60% symmetric noise or 40%
asymmetric noise), our approach performs even better,
with an average accuracy increase of over 20%.

II. PROBLEM STATEMENT

When building an intrusion detection system, security pro-
fessionals need a lot of labeled traffic data. Either they
download the available intrusion detection datasets from open-
source communities or collect and label network traffic manu-
ally. The labeling information contained in open-source traffic
datasets in the former may be outdated due to the evolution
of attacks. The latter also inevitably suffers from label noise
due to careless human labeling and rigid machine annotation.
Noisy labeled data can significantly impact the detection per-
formance of DL-based models. Therefore, our goal is to obtain
an effective intrusion detection model from noisy training data.

Let D = (xi, yi)
N denotes the training dataset with noisy

labels, where xi is the i-th traffic sample, yi is the given label
of xi, and N denotes the total number of training samples. For
each xi, there exists one unique latent real label ŷi. If yi ̸= ŷi,
then xi is considered the noisy traffic, otherwise it is deemed
clean.

III. THE PROPOSED FRAMEWORK

In this section, we propose a uniform framework to obtain
a robust intrusion detection model from noisy data. The
framework comprises two essential components: Cross-Divide

and Joint-SSL. We call this integrated technique as Gedss,
which stands for Generic Data Selection and Joint SSL. The
overall framework of Gedss is shown in Fig.1.

A. Cross-Divide: Data selection

To effectively divide clean and noisy data, we introduce an
enhanced sample selection strategy Cross-Divide. Our primary
idea is to fit the cross-prediction loss of the samples into a
double Gaussian distribution, thus separating noisy and clean
samples more distinctly. Dynamic threshold is also employed
to further improve the quality of sample selection.

Two models, M1 and M2, sharing an identical network
structure, are initialized for label noise detection, and the last
layer of the network is Softmax. The dataset, denoted as D,
contains noisy data that is initially divided into two subsets D1

and D2 by random sampling. We make M1 and M2 pre-train
several epochs with D1 and D2 datasets, respectively.

Subsequently, we employ one model to evaluate the training
subset of the other model. We adopt the prediction Jensen-
Shannon divergence (JSD) as the evaluation criterion and fit
the results to a Gaussian mixture model (GMM). Compared
with cross-entropy (CE) loss, the JS loss is symmetric in
calculation and the range of values is between [0, 1], which
is more suitable to fit GMM. For a given sample xk

i in Dk

and k ∈ {1, 2}, the prediction probability from M3−k can be
denoted as pi = [p1i , p

2
i , . . . , p

C
i] and its corresponding ground-

truth label as yi = [y1i , y
2
i , . . . , y

C
i], where C refers to the total

number of traffic categories. The JSD of samples prediction
losses is defined as follows,

di = JSD(yi, pi)

=
1

2
KL(yi||

yi + pi
2

) +
1

2
KL(pi||

yi + pi
2

)
(1)

where KL is the Kullback-Leibler divergence function.
After getting the JS divergence D = {d1, d2, . . . , dN/2} of

every sample, the Expectation Maximization(EM) algorithm
is used to fit a two-component GMM. For each sample, its

(a) (b)

Fig. 2. Training on Bot-IoT with 80% noise. (a) warm up after 10 epochs
(b) training after 50 epochs

clean probability wi is equivalent to the posterior probability
p(g|di), where g is the Gaussian component with smaller mean
(smaller loss).

The prediction loss of noisy and clean samples fitting
Gaussian distribution is shown in Fig.2(a), it is obvious that
most of the noisy data are close to 0 while clean data approach
1. As shown in Fig.2(b), the prediction loss of noisy and
clean samples gradually converges into the two ends over the
training. A threshold wthres is set to divide labeled data and
unlabeled data based on W = {wi : i ∈ (1, . . . , N)}. If the
threshold is set too low, much noise will be introduced, and if
the threshold is set too high, it is hard to represent the complete
data distribution because of the little clean data selected. So a
dynamic threshold is used to select the sample automatically.
Since the noise and clean samples are not well divided in the
early stage of training, a small threshold is defined to eliminate
the noisy data as much as possible. At the end of the training,
the difference between noisy and clean samples is quite clear,
so a large threshold is adopted to select clean samples for
training as much as possible. We let the threshold increase
linearly from 0.2 to 0.8, which can be expressed as,

wthres = 0.2 + 0.6 ∗ e

numEpoch
(2)

To further avoid the risk of noisy memory, we employ a
generalized cross-entropy (GCE) loss [11] which is robust
against noisy labels. Ghosh et al. [12] have demonstrated that
mean absolute error (MAE) can effectively restrain noisy data,
but MAE has the problems of slow convergence and difficult
training. And categorical cross entropy (CCE) is faster to train
but less resistant to noise. GCE [11] combines the advantages
of MAE and CCE and achieves results on noisy data. The
robust loss function is defined as follows,

Lq =
1− (

∑K
k=1 ykŷk)

q
(3)

where q ∈ (0, 1] is a hyperparameter. When q = 1 ,
the Lq loss becomes MAE, and when q approaches 0, the
loss becomes CCE. In our experiments, we set q = 0.7.
Algorithm.1 summarizes our divide method.

B. Joint-Semi supervised learning

Utilizing the Cross-Divide sample selection strategy, we
categorize clean and noisy samples into labeled and unlabeled

Algorithm 1 Cross-Divide
Require: training dataset D = (X ,Y), number of samples N ,

warmEpoch = 10, numEpoch = 200, θ(1) and θ(2);
1: D1 = D.sample(n = N/2), D2 = D - D1;
2: D1 =

(
X (1),Y(1)

)
, D2 =

(
X (2),Y(2)

)
;

3: while e < warmEpoch do
4: for k = 1, 2 do
5: θ(k) = warmup(X (k),Y(k),θ(k));
6: end for
7: end while
8: Using prediction loss to divide the dataset
9: while warmEpoch < e < numEpoch do

10: for k = 1, 2 do
11: for i = 1 to N/2 do
12: p̂ki = model(xk

i ,θ3−k);
dki = calculateJSD(p̂ki ,yki);
D(k) =

{
dk1 , d

k
2 , ..., d

k
N/2

}
;

13: end for
14: end for
15: W(1) = GMM(D(1), n components=2);
16: W(2) = GMM(D(2), n components=2);
17: end while
18: return W(1), W(2);

data in each epoch for semi-supervised learning. Algorithm.2
shows the details of our joint-semi supervised learning. The
labeled data are used to train and fine-tune the model M1, M2,
while the unlabeled data are used for semi-supervised learning.
The labels of unlabeled data are jointly predicted with M1

and M2, which improves the quality of pseudo labels. For a
sample ui ∈ Dunlabeled, the prediction probability from M1,
M2 can be denoted as p1i, p2i, where p1i = [p11i, p

2
1i, . . . , p

C
1i],

p2i = [p12i, p
2
2i, . . . , p

C
2i] and C for traffic class. Calculate the

average predicted probability pi = (p1i + p2i)/2, where the
class with the highest prediction probability is considered as
the pseudo-label k. The loss of unlabeled samples is denoted
as follows,

Lu =
1

2
(CEloss(p1i, k) + CEloss(p2i, k)) (4)

For labeled data xi, we keep employing GCE instead of CE,
and the loss of supervised learning is defined as follows,

Lx =
1

2
(GCEloss(y

(1)
predict, y)+GCEloss(y

(2)
predict, y)) (5)

The total loss function we minimize is

Ltotal = Lx + λuLu (6)

where λu is the coefficient to control the strength of the
unsupervised loss.

However, DNN usually learns easy classes first, which can
lead to high prediction loss for hard classes [10]. Such samples
are treated as noise, which leads to the problem of few difficult
categories in the labeled data. To address the imbalance, we
train the model with clean data every three times, and then

Algorithm 2 Joint-SSL

Require: W(1) and W(2);
1: while warmEpoch < e < numEpoch do
2: Determine the threshold, wk

thres using Eq.(1)
3: W(1), W(2) = CrossDivide(e, θ(1), θ(2))
4: for i = 1 to N/2, k = 1, 2 do
5: D(k)

labeled ←
{
(xk

i , y
k
i) : w

k
i ≥ wk

thres :
}

6: D(k)
unlabeled ←

{
(xk

i , y
k
i) : w

k
i < wk

thres

}
7: end for
8: Initialize Model1, Model2 with θ(1), θ(2)

9: for iter = 1 to num iters, k = 1, 2 do
10: Lk

X , θ(k) = Mk(D(k)
labeled, θ

(k))
11: Ŷk = Mk(D(k)

unlabeled,D
(3−k)
unlabeled, θ

(k))
12: LU = semiLoss(Ŷk,Ŷ3−k)
13: end for
14: L = LU + LX
15: Update θ(1), θ(2);
16: end while
17: return θ(1), θ(2);

fine-tune the model with full data. And a noise-resistant loss
function is employed, which tends to learn samples with lower
prediction loss. The model trained using clean data has certain
prior knowledge that mislabeled samples in difficult classes
have higher prediction loss, so the loss function can enable the
model to ignore them and learn only the samples with small
prediction loss i.e., labels are likely to be more accurate.

IV. EXPERIMENTAL ANALYSIS

In this section, we validate our proposed Gedss on three
popular traffic datasets under different label noise ratios.

A. Dataset

1) BoT-IoT dataset [2]: BoT-IoT was created in the Cyber
Range Lab of UNSW Canberra, which has been widely used
in the study of malicious traffic detection. This dataset is
developed on a simulated environment, featuring network
traffic generated by IoT botnet attacks.

2) CIC-IDS2017 dataset [3]: CIC-IDS2017 was developed
by Canadian Institute for Cybersecurity. The attacks were
launched on 12 devices with different operating systems. It
included the most common attacks based on the 2016 McAfee
report.

3) NSL-KDD dataset [13]: NSL-KDD was created by the
University of New Brunswick Canadian Institute for Cyber-
security to address the flaws in the classic intrusion detection
dataset KDDCup99.

B. Noise Settings

We employ two types of noise models to simulate the real
world: symmetric and asymmetric. We refer to the previous
work [14] to set up our noise scenarios. In the symmetric
scenario, the labels of an r portion of one particular traffic

Fig. 3. Illustration of symmetric (left) and asymmetric (right) scenarios at
60% noise ratio.

may be randomly flipped to all other classes. In the asym-
metric scenario, only the labels of malicious traffic would be
incorrectly labeled as benign samples.

As shown in Fig.3, we demonstrate the visualization of the
confusion matrix plots for symmetric and asymmetric noise
at 60% noise ratio, where the dataset contains benign traffic
and two types of attack traffic. The y-axis denotes the ground
truth (GT) label of the sample, the x-axis denotes the label of
the sample in the noisy dataset, and the decimals in the matrix
represent the proportions of the corresponding labels. The left
side represents the symmetric noise scenario, where 60% of all
categories of traffic are randomly flipped into labels of other
categories. The right side represents the asymmetric noise
scenario, where only the labels of attack traffic are converted
into benign traffic labels.

C. Experimental Setup

In the training phase, we train the model with an Adam
optimizer. The learning rate is set as 0.01 to optimize the
network with 200 epochs. All of the experiments were per-
formed using Pytorch 1.13.0 and trained on a Linux server
with Intel(R) Core(TM) i9-10920X@3.50GHz, 256GB RAM,
and an NVIDIA GeForce RTX3080 GPU.

D. Baseline methods

We compare the performance of some state-of-the-art robust
learning methods with our framework Gedss. Specifically, to
replicate DivideMix and UNICON, we design a data aug-
mentation approach that consists of randomly adding noise
to certain features and randomly deleting certain features (by
setting the feature values to 0). The details of all competitors
are as follows.

GCE [11]: Generalized cross-entropy (GCE) loss is a com-
bination of mean absolute error (MAE) loss and cross-entropy
(CE) loss, integrating the advantages of both loss to be robust
to label noise and to optimize the network easily.

RAD [7]: Robust Anomaly Detection (RAD) is a label
calibration framework based on multi-model voting, and this
integrated model requires a small number of clean labeled data
for initialization.

Co-Teaching [8]: Coteaching iteratively selected a fraction
of small-loss data as clean data to train another network.

DivideMix [9]: DivideMix improved the sample selection
mechanism of Co-Teaching by fitting the loss to a Gaussian

TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS IN ACCURACY RESULT

(%) ON NSL-KDD

Noise type Sym. Asym.

Methods/Noise ratio 20% 40% 60% 80% 20% 40%

Standard CE 95.11 91.70 88.55 81.12 95.25 88.45
GCE [11] 89.22 88.09 71.29 33.33 88.89 26.54
RAD [7] 95.48 93.67 88.79 59.54 94.18 73.23

Co-Teaching [8] 95.89 94.97 93.27 87.67 96.20 91.17
DivideMix [9] 95.65 95.08 93.00 85.87 94.68 88.82
UNICON [10] 95.98 95.25 93.74 87.28 95.55 91.80

Gedss 95.95 95.78 94.71 91.70 95.92 94.54

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS IN ACCURACY RESULT

(%) ON CICIDS2017

Noise type Sym. Asym.

Methods/Noise ratio 20% 40% 60% 80% 20% 40%

Standard CE 96.13 92.90 82.49 62.94 96.50 88.90
GCE [11] 97.37 97.14 96.30 12.96 97.75 11.11
RAD [7] 97.70 97.64 94.27 35.76 97.74 57.21

Co-Teaching [8] 99.05 93.13 25.28 11.16 99.03 97.96
DivideMix [9] 95.87 95.03 93.61 93.54 97.27 93.92
UNICON [10] 97.18 96.70 96.19 92.66 97.06 92.44

Gedss 99.22 99.07 98.75 97.86 99.15 98.76

Mixture Model (GMM) and using a fixed threshold to divide
clean and noisy data.

UNICON [10]: UNICON improved the sample selection
mechanism of DivideMix by maintaining the class balance
of the selected data and introducing contrastive learning in
semi-supervised learning.

E. Experimental Results And Evaluation

We present the performance of Gedss and other SOTA
methods on three traffic datasets. Based on the noise setup
approach described above, we considered symmetric noise
20%, 40%, 60%, and 80%, asymmetric noise 20% and 40%.
We use accuracy to evaluate the performance of the proposed
model.

1) Comparison with SOTA methods: Table I, Table II
and Table III show the accuracy results on NSL-KDD, CI-
CIDS2017, and BoT-IoT datasets, respectively. Gedss exhibits
advanced detection performance in various noisy scenarios
due to the improved data selection strategy that efficiently
separates noisy and clean traffic data. Fine-tuning the model
to learn the distribution of hard samples improves the model’s
ability to identify decision boundaries. Therefore, our method
has superior detection performance even in high-noise scenar-
ios (over 60% symmetric noise or 40% asymmetric noise),
averaging 12.92%, 31.88%, and 24.78% higher accuracy than
other methods.

DivideMix and UNICON perform well in low-noise scenar-
ios, but the performance of the models degrades significantly
as the noise rate increases. The probable reason is that both
methods are aimed at image data, which rely on various data
augmentation methods for the field of computer vision, how-
ever, these augmentation methods are not feasible on traffic

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS IN ACCURACY RESULT

(%) ON BOT-IOT

Noise type Sym. Asym.

Methods/Noise ratio 20% 40% 60% 80% 20% 40%

Standard CE 83.86 80.67 79.24 51.88 85.57 69.81
GCE [11] 92.87 87.49 83.83 22.20 92.06 11.11
RAD [7] 93.11 92.56 87.04 30.78 91.16 85.05

Co-Teaching [8] 97.36 96.26 95.93 84.34 97.56 82.38
DivideMix [9] 88.63 87.88 84.05 82.12 88.73 82.65
UNICON [10] 87.09 89.57 81.96 73.64 86.80 81.91

Gedss 98.91 98.87 98.28 96.08 98.50 96.62

(a) (b)

(c) (d)

Fig. 4. Classification results of Gedss and Baseline.

data. Co-Teaching has advanced results in low and medium
noise scenarios. However, since the method does not consider
the class imbalance problem in data selection, the model tends
to choose simple classes in high-noise scenarios, resulting in
low model performance or even training failure. Both RAD
and GCE outperform standard CE at low noise levels but
almost completely fail at high noise. Our experiments also
show that the standard cross-entropy loss shows robustness to
some extent under lower noise conditions.

2) Classification performance evaluation: Next, we eval-
uate the multi-classification performance of the proposed
method. Fig.4(a) and Fig.4(c) illustrate the classification re-
sults of Gedss on two datasets under 80% noise. Fig.4(b)
and Fig.4(d) show the classification results of a DNN trained
on ideal datasets (with fully accurate labels). The classifier
obtained by Gedss with 80% noise data has a similar per-
formance to the classifier trained with the ideal datasets,
which demonstrates the excellent robustness of our method. As
shown in Fig.4(a) and Fig.4(b), the classification performance
of DoS HTTP and DDoS HTTP is relatively poor. This is
because both of them attack by initiating HTTP requests so

TABLE IV
RESULT OF ABLATION ON BOT-IOT

Methods/Noise ratio 40% 50% 60% 70% 80% Average

Gedss w/o DT 98.13 97.92 97.93 97.43 95.67 97.42(+0.48%)
Gedss w/o FT 97.46 97.57 97.66 97.16 94.77 96.92(+1.03%)
Gedss w/o JS 97.88 97.81 97.39 96.85 93.50 96.69(+1.59%)

Gedss 98.87 98.61 98.28 97.91 96.08 97.95

TABLE V
RESULT OF ABLATION ON CICIDS2017

Methods/Noise ratio 40% 50% 60% 70% 80% Average

Gedss w/o DT 98.65 98.41 97.74 97.05 93.29 97.03(+1.72%)
Gedss w/o FT 96.72 96.33 95.94 95.57 94.38 95.79(+2.96%)
Gedss w/o JS 98.63 98.17 98.05 96.52 94.30 97.13(+1.62%)

Gedss 99.07 98.75 98.75 97.61 97.86 98.41

they have similar features. And the number of these two types
of attacks in the BoT-IoT dataset is small, making it difficult
for the classifier to learn their complete feature distribution.

F. Ablation Experiments

In this section, we perform several ablation experiments to
verify the effectiveness of the key components of the proposed
Gedss. We formulate three methods: (1) Gedss does not use a
dynamic threshold, but uses a fixed threshold of 0.5 to divide
the data, called Gedss w/o DT. (2) Gedss does not fine-tune
the model with all data, and only uses the clean data divided,
termed Gedss w/o FT. (3) Instead of fitting the JS divergence
to the GMM distribution when dividing the data, Gedss uses
the CE loss to fit to the GMM distribution, which we call
Gedss w/o JS.

As shown in Table IV and Tables V, we test the sym-
metric noise 40%-80% scenarios on two datasets, BoT-IoT
and CICIDS2017, and the results show a varying degree of
decline in the performance of the models due to the missing of
important components. A potential problem caused by using
a constant threshold is that if the threshold is set too low,
many noisy samples are introduced, and if the threshold is set
too high, fewer clean samples are selected, making it difficult
to represent the entire data distribution. It can be seen that
not fine-tuning the model brings a large performance drop.
This is because methods based on selecting clean samples
with small losses are biased toward learning easy samples,
thus ignoring hard samples that provide a huge benefit to the
model’s predictive performance. Fine-tuning the model with
the entire data exposes the distribution of this hard sample to
the model and improves the model’s ability to identify decision
boundaries. The experimental results also prove that the effect
of dividing the data by fitting to the GMM distribution through
JS divergence is better than fitting to the GMM distribution
through CE loss, this is because the range of JS divergence is
between 0-1, which is more suitable to be fitted to the GMM
distribution, whereas the CE loss needs to be normalized
before fitting, which will lose some information.

V. CONCLUSION

In this paper, we proposed Gedss, a generic label-noise-
resistant framework for malicious traffic detection. By fitting
the JSD-based sample prediction loss to GMM as a criterion,
the quality of sample selection in Gedss was significantly
improved. The threshold for our sample selection was au-
tomatically and dynamically adjusted, which makes Gedss
adaptive to various malicious traffic datasets with different
noise ratios without adjusting hyperparameters. Considering
the class imbalance of divided clean data, the idea of fine-
tuning the models by using all data was presented to improve
the performance of semi-supervised learning. By performing
extensive experiments on multiple datasets, we demonstrated
that Gedss consistently worked significantly better compared
to state-of-the-art methods.

REFERENCES

[1] Jin Kim, Nara Shin, Seung Yeon Jo, and Sang Hyun Kim. Method
of intrusion detection using deep neural network. In 2017 IEEE
international conference on big data and smart computing, pages 313–
316. IEEE, 2017.

[2] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin
Turnbull. Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: Bot-iot dataset. Future
Generation Computer Systems, 100:779–796, 2019.

[3] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp, 1:108–116, 2018.

[4] Jiayun Xu, Yingjiu Li, and Robert H Deng. Differential training: A
generic framework to reduce label noises for android malware detection.
Network and Distributed System Security Symposium, 2021.

[5] Muhammad Fahim and Alberto Sillitti. Anomaly detection, analysis and
prediction techniques in iot environment: A systematic literature review.
IEEE Access, 7:81664–81681, 2019.

[6] Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger,
Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer,
Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer
look at memorization in deep networks, 2017.

[7] Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak,
Sonia Ben Mokhtar, and Lydia Y Chen. Enhancing robustness of on-line
learning models on highly noisy data. IEEE Transactions on Dependable
and Secure Computing, 18(5):2177–2192, 2021.

[8] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu,
Ivor Tsang, and Masashi Sugiyama. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

[9] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learn-
ing with noisy labels as semi-supervised learning. arXiv preprint
arXiv:2002.07394, 2020.

[10] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal
Mian, and Mubarak Shah. Unicon: Combating label noise through
uniform selection and contrastive learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9676–9686, 2022.

[11] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for
training deep neural networks with noisy labels. Advances in neural
information processing systems, 31, 2018.

[12] Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss
functions under label noise for deep neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

[13] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A
detailed analysis of the kdd cup 99 data set. In 2009 IEEE symposium on
computational intelligence for security and defense applications, pages
1–6. Ieee, 2009.

[14] Qingjun Yuan, Chang Liu, Wentao Yu, Yuefei Zhu, Gang Xiong,
Yongjuan Wang, and Gaopeng Gou. Boau: Malicious traffic detection
with noise labels based on boundary augmentation. Computers &
Security, 131:103300, 2023.

	Introduction
	Problem Statement
	The Proposed Framework
	Cross-Divide: Data selection
	Joint-Semi supervised learning

	Experimental Analysis
	Dataset
	BoT-IoT datasetkoroniotis2019towards
	CIC-IDS2017 datasetsharafaldin2018toward
	NSL-KDD datasettavallaee2009detailed

	Noise Settings
	Experimental Setup
	Baseline methods
	Experimental Results And Evaluation
	Comparison with SOTA methods
	Classification performance evaluation

	Ablation Experiments

	Conclusion
	References

