
Black-box Word-level Textual Adversarial Attack
Based On Discrete Harris Hawks Optimization

Tianrui Wang1, Weina Niu1
∗
, Kangyi Ding1, Lingfeng Yao1, Pengsen Cheng2 and Xiaosong Zhang1

1School of Computer Science and Engineering University of Electronic Science and Technology of China, Chengdu, China
2School of Cyber Science and Engineering Sichuan University, Chengdu, China

niuweina1@126.com

Abstract—Neural network-based applications are prone to be-
ing fooled by adversarial examples due to the natural vulnerabil-
ity of deep neural networks (DNNs). Textual adversarial attacks
are particularly challenging due to the discreteness between
texts. The adversarial examples crafted by word-level textual
attacks which are typically treated as optimization problems in
black-box scenarios perform better in human evaluation. Existing
approaches have struggled to balance the success rate with
the time consuming, mainly because the chosen optimization
algorithm is not efficient enough. In this paper, we propose a
method to generate textual adversarial examples called Discrete
Harris Hawk Optimization (DHHO). We set up three operations
for handling discrete data, which are applied to each stage of
the Harris Hawk Optimization (HHO) to enable it to solve
optimization problems in discrete space. By attacking BiLSTM
and BERT on two benchmark data sets, we conduct extensive
experiments to evaluate our attack method with a success rate
of up to 98% and a reduction of time is at least 50%. Moreover,
the experimental results also show that our adversarial examples
can ensure high quality and transferability.

Index Terms—Textual Adversarial Attack, Harris Hawks Op-
timization, Word-level Attack, Deep Neural Networks

I. INTRODUCTION

DNNs are susceptible to being attacked by adversarial

perturbations [1] and researches in quantities have been carried

out. The security of DNNs is also a concern in the field of

natural language processing, where DNNs are widely used.

The importance of studying textual adversarial attacks is

growing day by day.

Different from image and audio, the discrete textual domain

makes it thorny to generate adversarial examples and it is

hardly possible to add imperceptible perturbations. Even at the

minimum character-level modification may lead to changes in

sentence meaning or solecism. In previous works, although

there are numerous attempts to generate text attacks, there are

more or less some drawbacks, such as insufficient success rate,

long attack time, etc. The main reason for these problems in

previous approaches is that the chosen optimization algorithm

is weak in terms of astringency or prone to get stuck in

local optimization. To better improve the above metrics, we

introduce the Harris Hawk Optimization [2] to the field of

textual adversarial attacks. HHO is a novel nature-inspired

meta-heuristic optimizer inspired by how Harris Hawks hunt

in nature. We improve HHO to enable it to search in discrete

space and thus generate adversarial examples.

In summary, the contributions of our paper are as follows:

• We propose a method called DHHO, where we apply

three core operations to each phase of HHO to generate

textual adversarial examples.

• We set three core operations, improved from logical

operations, that can be used to guarantee data operations

in discrete spaces.

• We evaluate the performance of our method by attack-

ing BiLSTM [3] and BERT [4] on two benchmark

datasets——IMDB [5] and SST [6]. Our method achieves

a result of success rate of up to 98% and a reduction of

time consuming is at least 50%.

The rest of our work is organized as follows: Section II

mainly introduces some previous studies on text confrontation;

Section III mainly explains the basic concepts and theories;

Section IV presents our DHHO in detail; Section V shows

a series of experiments and performances about our DHHO;

Section VI summarizes our work.

II. RELATED WORK

Before presenting our method, let us briefly summarize pre-

vious work. In existing studies, most of the adversarial attacks

have focused on the deceptive textual classification system,

and there are three types of adversarial attacks: character-

level attack, word-level attack and sentence-level attack. A

character-level attack approach called DeepWordBug can craft

adversarial examples in black-box scenarios, which follows

a two-step process, proposed by Gao et al. [7]. In the first

step, they assess the importance of the words, and based on

this, identify which words to modify. In the second step, they

add imperceptible interference to the words selected in the

first step by a series of character operations as described

above. At the same time, they also apply edit distance to

ensure the readability of crafted adversarial examples. The

word-level attack manipulates entire words, not just a few

characters in a word. Samanta et al. [8] used FGSM to

quantity the importance of the words, indicating that the

removal of these words would have a considerable impact

on classification results. Jin et al. [9] proposed TextFooler,

which firstly identified corresponding critical words for the

target neural networks, and then replaced them with synonyms

according to priority until the prediction result was changed.

As for the sentence-level attack, Iyyer et al. [10] designed a

syntactic controlled paraphrase network called SCPNs, which

20
23

 2
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r S
up

po
rte

d
C

oo
pe

ra
tiv

e
W

or
k

in
 D

es
ig

n
(C

SC
W

D
) |

 9
79

-8
-3

50
3-

31
68

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

SC
W

D
57

46
0.

20
23

.1
01

52
71

3

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

relies on the codec architecture of SCPNs, for generating

adversarial samples through syntactic transformations.

III. PRELIMINARY KNOWLEDGES

A. Sememes

A sememe in linguistics refers to the smallest non-separable

semantic unit. Some linguists hold a view that the semantics of

every concept, including words, can be expressed by a finite

set of sememes. When it comes to the sememe knowledge

base, the most famous is HowNet [11] which has manually

annotated about 100,000 Chinese/English words or phrases

with more than 2,000 sememes. The OpenHowNet API [12]

is developed by Natural Language Processing Lab at Tsinghua

University. With this API, we can easily search HowNet for

the information we want.

B. Harris Hawks Optimization

Harris Hawks Optimization [2] is a novel population-based,

gradient-free and meta-heuristic optimization algorithm. The

core brainchild of HHO is to imitate the hunting style and col-

laborative behavior of Harris hawks in nature. HHO has been

progressively applied to problems such as binary classification

and multiobjective optimization.

In HHO, the eagle’s position corresponds to the solution to

the problem. HHO mainly has two phases: exploration phase

and exploitation phase, which implement global search and

local search respectively. In HHO, the escaping energy of prey

is denoted as E, and its calculation formula is:

E = 2E0(1− t

T
) (1)

where E0 is a random real number between (-1,1), t
represents the current iteration numbers and T represents the

maximum iteration numbers. When |E| ≥ 1 HHO works

in the exploration phase; when |E| < 1, HHO works in

the exploitation phase. The detailed principle and process of

algorithm can be found in the original paper [2].

IV. METHODOLOGY

A. Overview

Fig 1 shows the overall process flow in this paper. First,

the datasets need to be processed uniformly. GloVe is selected

as the model of word representation, and all sentences in the

dataset are converted into word vectors by publicly available

vector text files and saved for future use in the neural network

training step. Next, we utilize the part-of-speech (POS) tagging

tool to get POS for each word in all the sentences in the

dataset. This is followed by lemmatizing, the classification

and analysis of inflectional word classes. The whole list of

substitute words for the sentence is saved together, forming

the search space for the sentence. The second step is to build

and train neural networks.

B. Core Operations

As mentioned earlier, the discreteness of the textual domain

makes it impossible to directly utilize general population-

based optimization algorithms. The original HHO can only be

used for optimization in continuous space. Inspired by logical

operations such as “and”, “or” and “xor”, a series of operations

are customized to process data in discrete space and applied

to each stage of HHO, to achieve the goal of solving the

optimization (search) problem in the textual domain. Before

applying HHO, we need to make the concepts in the textual

adversarial problem one-to-one correspond to the HHO theory.

When processing each sentence, we treat the current sentence

as a position in the search space, where each word corresponds

to a dimension.

In general, we can define Xn(t) =
{wn

1 (t) · · ·wn
d (t) · · ·wn

D(t)} ∈ Θ(wo
d), where D represents

the length of the sentence, t represents the current iteration

numbers, and Θ(wo
d) represents a search space composed of

substitutable words of the current word wo
d(t). The prediction

probability of victim models to target labels is considered as

the optimization score. Next, we will give three introductions

to facilitate our subsequent elaboration of the method.

Suppose there are S(w
o
d) = {s1, s2, · · · sk}, where S(w

o
d)

represents a set of all substitutable words from HowNet of

wo
d. And S1, S2 ⊆ S(w

o
d) when |S1| = |S2| = 1. Then the

following three operations can be set:

1. Redefine “and” operation, which is denoted by “∧”. If

S1 = S2 = si, the operation result is si; Conversely, the

operation result is a random one from S(w
o
d)− S1 − S2.

2. Redefine “or” operation, which is denoted by “∨”. If

S1 = S2 = si, the operation result is si; Conversely,

the operation result is a random one from S1 + S2.

3. Redefine “xor” operation, which is denoted by “
⊕

”. If

S1 = S2 = si, the operation result is a random one from

S(w
o
d)− si; Conversely, the operation result is a random

one from S1 + S2.

C. Adversarial Example Generation Method Based On DHHO

Let P (t) = {Xn(t)|1 ≤ i ≤ N} represent the population at

the t-th iteration. Xi(t) is the i-th individual and Xi
d(t) means

the d-th word in Xi(t) whose length is D, where d ∈ [1, D].
N means the size of the population. XB(t) means the current

best individual in the population at the t-th iteration.

Initialization. In the beginning, we extend the current

sentence by N copies to form a population and then create

a random mutation for each individual of the population.

After generating Xi(0)(1 ≤ i ≤ N), Through the victim

model, we can get the prediction probability of the target label

to express the fitness of the individual, so as to determine

the current best individual XB(0). Equation (1) is used to

calculate the escaping energy E of prey. The value of E
is used to determine whether the current algorithm is in the

exploration or exploitation phases.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Flowchart of the whole attack process.

Exploration phase. During the exploration phase, by

means of the random real number r on the (0, 1), the pop-

ulation is updated according to the following formula:

Xi
d(t+ 1) = { Xp1

d (t) ∧Xi
d(t), if r < 0.5

Xp2

d (t) ∧Xp3

d (t), otherwise
(2)

where p1, p2, and p3 are random numbers on [1, N], that

is, Xp1

d (t), Xp2

d (t) and Xp3

d (t) are random individuals in the

population.

Exploitation phase. During the exploitation phase, by

means of escaping energy E and best individual XB(t),
the population is updated according to the following four

mechanisms:

1. Soft besiege: when 0.5 < |E| ≤ 1, r ≥ 0.5,

Xi
d(t+ 1) = Xp

d (t)
⊕

Xi
d(t) (3)

2. Hard besiege: when |E| < 0.5, r ≥ 0.5,

Xi
d(t+ 1) = XB

d (t)
⊕

Xi
d(t) (4)

3. Soft besiege with progressive rapid dives: when 0.5 <
|E| ≤ 1, r < 0.5,

Xi
d(t+ 1) = Xp

d (t) ∨Xi
d(t) (5)

4. Hard besiege with progressive rapid dives: when |E| <
0.5, r < 0.5,

Xi
d(t+ 1) = XB

d (t) ∨Xi
d(t) (6)

where p represents a random number on [1, N], that is,

Xp
d (t) represents a randomly chosen individual in the pop-

ulation.

Mutation. In order to enhance the diversity of individuals

in the population, we utilize a mutation operation. Specifically,

we generate two random numbers Rand1, Rand2 ∈ (0, 1) If

Rand1 < temp and Rand2 < Pm, where Pm is a random

number in (0, 1) and temp depends on flag which is 0 or 1,

we randomly select one from the list of substitutable words of

a word to replace it.

Inspired by Liu et al. [13], we add a process called the

deletion operation after the above search process. The explicit

processing method is to iterate the generated adversarial ex-

ample word by word and replace it with the word at the cor-

responding location of the original sentence. If the prediction

of the model remains consistent, continue to process the next

word, and if not, fall back to the word used by the adversarial

example. The whole process is shown as Algorithm 1.

V. EXPERIMENTS

A. Attack Target and Baseline Method

For datasets, we choose IMDB [5] and SST-2 [6], which are

the two most commonly used datasets in sentiment analysis

tasks. The IMDB dataset contains 50000 highly polarized com-

ments from the Internet Movie Database (IMDB). The SST-2

is also a binary classification dataset. However, compared with

IMDB, the average length of sentences in SST-2 is shorter and

the attack is more challenging. As for victim models, two

commonly used universal sentence encoding models called

BiLSTM [3] with max pooling and BERT [4] are chosen.

We choose several word-level attack methods which are

open-source as the baseline. These methods utilize different

methods of generating substitutable words and optimization

algorithms. The first baseline method [14] utilizes WordNet

[15] to generate synonyms as substitutes, and searches based

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Adversarial Example Generation Method Based

On DHHO

Input: a sentence X = {w1 · · ·wd · · ·wD} ∈ Θ(wd),
population size N , maximum iteration T
Output: adversarial example X

′

1: Initialize, and generate population Xn(0) =
{X1(0) · · ·Xi(0) · · ·XN (0)};

2: Get the best individual XB(0);
3: for i ← 1 to T do
4: update escaping energy E;

5: for i ← 1 to N do
6: if |E| ≥ 1 then
7: perform Equation (2), flag ← 0;

8: else if 0.5 < |E| ≤ 1, r ≥ 0.5 then
9: perform Equation (3), flag ← 1;

10: else if 0.5 < |E| ≤ 1, r < 0.5 then
11: perform Equation (5), flag ← 1;

12: else if |E| < 0.5, r ≥ 0.5 then
13: perform Equation (4), flag ← 1;

14: else if |E| < 0.5, r < 0.5 then
15: perform Equation (6), flag ← 1;

16: end if
17: perform mutation operation, update the best indi-

vidual XB(t+ 1);
18: end for
19: end for
20: return X

′
;

on the greedy strategy. We call it “Greedy” for short. The

second baseline method [16] is based on a genetic algorithm

to search the space limited by model prediction and word

embedding distance. We use “Genetic” to denote this method.

The last baseline method [17] which is short for “PSO” is

based on the sememe library and utilizes a particle swarm

algorithm to perform the search with high attack success rate.

B. Experiment Settings and Metrics

For our DHHO, we set the population size N to 60 and the

maximum iteration numbers T to 20, which are also applied

to the baseline methods. In our experiment, when flag is 0,

temp is 0.3; when flag is 1, temp is 0.7.

We randomly select 1000 sentences as the experiment set

from the dataset for each attack, and we mainly evaluate the

attack success rate and attack time. In addition, during our

experiment, these sentences had to meet the following require-

ments: be of moderate length and be accurately classified by

the victim model. These requirements ensure the accuracy of

our attack results. We also limit the modification rate which

indicates the ratio of the number of words that are modified to

these of the whole sentence to no more than 30%, otherwise

it is considered a failed attack even if it succeeds in cheating

the victim model.

TABLE I
THIS TABLE RECORDS THE SUCCESS RATE (%) OF EACH METHOD.

Method
BiLSTM BERT

IMDB SST-2 IMDB SST-2

Genetic[16] 87.17 68.81 87.50 67.36
Greedy[14] 87.42 74.20 74.00 65.02

PSO[17] 99.20 93.50 95.30 89.90
DHHO 98.80 89.80 97.50 92.23

TABLE II
THE ATTACK TIME (SECONDS) REQUIRED TO GENERATE 1000

ADVERSARIAL EXAMPLES AND MODIFIED RATES (%). THE ”+” IN THE

FIGURE REPRESENTS THAT THE TIME CONSUMED IS FAR MORE THAN ONE

DAY.

Victim Model Method
IMDB SST-2

Time %M Time %M

BiLSTM
Genetic[16] + 9.42 64198.58 11.62

PSO[17] 42400.26 4.32 5988.85 9.08
DHHO 12418.83 5.88 2826.09 8.21

BERT
Genetic[16] + 7.33 40635.14 10.01

PSO[17] 41628.74 4.17 4916.82 8.19
DHHO 7665.07 5.12 1707.48 9.19

C. Evaluation

Attack Success Rate. The attack rate is measured as a

percentage of samples which are able to successfully fool

neural networks on our experiment set. We conduct compar-

ative experiments with the success rates of the three baseline

approaches, and the performances of all approaches are dis-

played in Table I. Our method and PSO have approximately

the same effect, but higher than the other two baselines. On

two benchmark datasets, the success rate of our method against

two neural networks is misclassified with a high success rate,

particularly on IMDB, which can be as high as 98%. As for

SST-2, which has a much shorter average length, the overall

success rate is slightly lower. The high success rate shows that

our method can definitely reveal the vulnerability of DNNs.

Attack Time. The attack time mainly refers to the time

required for a complete attack on an experimental set (i.e.

1000 sentences). We add additional attack time comparison

experiments with Genetic and PSO. It is worth noting that

according to the comparison of attack time in Table II, we

can obviously see that our method is considerably faster than

the other two methods. Here we focus on the time cost of

Genetic. Generating 100 adversarial examples on IMDB takes

approximately 15 hours on average, so Genetic consumes far

more time than PSO and DHHO. Taken as a whole, our

method takes into account both the success rate and the time

cost. On average, our method can save more than 50% of the

time on SST, and even 70% on IMDB. It can also be observed

from Table II that our DHHO sacrifices the rate of modification

to some extent compared to PSO.

HHO is a two-phase optimization algorithm. In the ex-

ploration phase, HHO deeply explores each region and side

of the space. In the exploitation phase, HHO truly enforces

the search process in the local region. Thus, HHO exhibits

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Attack time and success rate for different population sizes. The bars depict how time varies with population size, while the lines depict how the
success rate varies with population size.

TABLE III
EVALUATION RESULTS OF ADVERSARIAL EXAMPLES, INCLUDING THE

VALIDITY (%) AND GRAMMATICAL ERROR INCREASE RATE (%).

Vicitm Model Method %V %I

BiLSTM
PSO[17] 70.50 1.39
DHHO 76.00 0.75

BERT
PSO[17] 72.00 1.43
DHHO 77.00 1.6

strong astringency and local search capability. Because of this,

our method performs considerably better than the other two

population optimization-based algorithms in terms of time.

The performance of experiments sufficiently demonstrates

that our DHHO not only keeps the excellent optimization

capabilities of the original HHO, but also guarantees the ability

to manipulate discrete data through the newly introduced core

operations .

Quality and Validity. The attack validity mainly means that

the true label (evaluated by humans or other tools) of the ad-

versarial example and that of the original input should be iden-

tical. We randomly selected 100 successful adversarial exam-

ples on SST, using LanguageTool (https://languagetool.org/)

to detect the number of grammatical errors of a sentence. The

quality of adversarial examples is mainly measured by the

above-mentioned modification rate and grammatical error in-

crease rate. We use the ratio of the grammatical error numbers

caused by adversarial attack to the length of the original input

to express the grammatical error increase rate, and it is 1.19%

for our method. Overall, our crafted adversarial examples

are of high quality. We invite several volunteers to manually

assess the validity of adversarial examples. According to our

evaluation, the overall proportion of valid attacks is 76.5%

in BiLSTM and BERT. Table III records the validity and

grammatical error increase rate of adversarial examples.

From Table II and Table III, our method performs slightly

better compared to PSO in terms of quality and validity.

Our method relies on three core operations and the efficient

optimization capability of HHO to achieve higher model

prediction scores during the iteration of the attack, which

impacts the validity. Overall, the adversarial examples crafted

by our method are closer to human writing than PSO.

Transferability. Transferability [18] reflects whether the

Fig. 3. Attack success rate for different iteration times.

TABLE IV
THE CLASSIFICATION ACCURACY (%) OF TRANSFERRED ADVERSARIAL

EXAMPLES ON THE TWO DATASETS. LOWER ACCURACY REFLECTS

HIGHER TRANSFERABILITY.

Transfer Method IMDB SST

BiLSTM =>BERT
PSO[17] 75.72 63.43
DHHO 41.52 43.93

BERT =>BiLSTM
PSO[17] 77.67 58.09
DHHO 48.87 46.17

adversarial examples crafted for one model can deceive an-

other one. We conduct experiments on the transferability of

our method, that is, using successful adversarial examples of

BiLSTM to attack BERT and vice versa. Table IV presents

the transferability comparison of adversarial examples crafted

by DHHO and PSO. As presentation in Table IV, our method

crafts adversarial examples that perform considerably better

on the metrics of transferability.

Hyperparameter Analysis. We investigate the effects of

population size and iteration numbers on the results to further

demonstrate our DHHO. Fig 2 shows the shift in attack time

and success rate as a function of population size. We record the

results of experiments with population sizes ranging from 20

to 100. From Fig 2 it will be seen that, within certain limits, the

time, and success rates rise as the population size increases.

It can be observed that the overall time spent on IMDB is

much larger than that on SST, which is undoubtedly owing

to the longer average sentence length in IMDB. Similarly, in

terms of success rate, the performance of SST is inferior to

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

that of IMDB. Fig 3 shows the shift in attack success rate as a

function of iteration numbers, with a minimum value 2. It can

be found that the attack success rate gradually increases with

the iteration numbers and eventually tends to stabilize. One

may notice that IMDB is more sensitive to iteration numbers.

The success rate on IMDB changes significantly more as

iteration numbers increase.

VI. CONCLUSION

In this paper, we proposed an efficient textual adversarial

attack method based on HHO that ideally balances attack time

and success rate. We introduced HHO into textual adversarial

attacks to achieve higher attack efficiency. To solve the discrete

optimization problem of HHO, we mainly set three core

operations that imitate logical operations, named “and”, “or”

and “xor”, which are applied at each stage of the HHO.

We conducted extensive experiments to present the strength

and effectiveness of our attack method in terms of attack

time and success rate. The average success rate is over 98%

on IMDB and over 90% on SST. At the same time, our

method is more efficient. On IMDB and SST, DHHO only

consumed about 30% and 50% of the time of the PSO that

achieves the highest average success rate among the baselines,

respectively. In addition, the adversarial examples crafted by

our method performed nicely in terms of validity, grammatical

error increase rate, and transferability. Our DHHO was mainly

applied to NLP systems based on BiLSTM or BERT for

sentiment classification tasks. However, the impact of DHHO

on other NLP models and tasks remains to be studied. In the

future, we will strive to further optimize the method with a

view to making greater breakthroughs in evaluation metrics

and applications.

ACKNOWLEDGEMENT

This work was supported in part by the National Key

Research and Development Program of China under Grant

No. 2022YFC3301700 and 2016QY001, in part by the Na-

tional Natural Science Foundation of China under Grant No.

62072078, in part by the Key R&D projects in Sichuan

Province under Grant No. 2020YFG0461.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-

han, I. Goodfellow, and R. Fergus, “Intriguing properties

of neural networks,” arXiv preprint arXiv:1312.6199,

2013.

[2] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Ma-

farja, and H. Chen, “Harris hawks optimization: Al-

gorithm and applications,” Future generation computer
systems, vol. 97, pp. 849–872, 2019.

[3] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and

A. Bordes, “Supervised learning of universal sentence

representations from natural language inference data,”

arXiv preprint arXiv:1705.02364, 2017.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“Bert: Pre-training of deep bidirectional transformers

for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[5] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y.

Ng, and C. Potts, “Learning word vectors for sentiment

analysis,” in Proceedings of the 49th annual meeting
of the association for computational linguistics: Human
language technologies, 2011, pp. 142–150.

[6] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, and

C. Potts, “Recursive deep models for semantic com-

positionality over a sentiment treebank,” in Empirical
Methods in Natural Language Processing, 2013.

[7] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box

generation of adversarial text sequences to evade deep

learning classifiers,” in 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, 2018, pp. 50–56.

[8] S. Samanta and S. Mehta, “Towards crafting text adver-

sarial samples,” arXiv preprint arXiv:1707.02812, 2017.

[9] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really

robust? a strong baseline for natural language attack on

text classification and entailment,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, no. 05,

2020, pp. 8018–8025.

[10] M. Iyyer, J. Wieting, K. Gimpel, and L. Zettle-

moyer, “Adversarial example generation with syntacti-

cally controlled paraphrase networks,” arXiv preprint
arXiv:1804.06059, 2018.

[11] Z. Dong and Q. Dong, “Hownet-a hybrid language

and knowledge resource,” in International conference on
natural language processing and knowledge engineering,
2003. Proceedings. 2003. IEEE, 2003, pp. 820–824.

[12] F. Qi, C. Yang, Z. Liu, Q. Dong, M. Sun, and Z. Dong,

“Openhownet: An open sememe-based lexical knowledge

base,” arXiv preprint arXiv:1901.09957, 2019.

[13] S. Liu, N. Lu, C. Chen, and K. Tang, “Efficient com-

binatorial optimization for word-level adversarial textual

attack,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 30, pp. 98–111, 2021.

[14] S. Ren, Y. Deng, K. He, and W. Che, “Generating nat-

ural language adversarial examples through probability

weighted word saliency,” in Proceedings of the 57th
annual meeting of the association for computational
linguistics, 2019, pp. 1085–1097.

[15] G. A. Miller, “Wordnet: a lexical database for english,”

in Human Language Technology, 1992.

[16] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Sri-

vastava, and K.-W. Chang, “Generating natural language

adversarial examples,” arXiv preprint arXiv:1804.07998,

2018.

[17] Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu,

and M. Sun, “Word-level textual adversarial attack-

ing as combinatorial optimization,” arXiv preprint
arXiv:1910.12196, 2019.

[18] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial

examples in the physical world,” in Artificial intelligence
safety and security. Chapman and Hall/CRC, 2018, pp.

99–112.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 20,2024 at 06:48:10 UTC from IEEE Xplore. Restrictions apply.

