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Abstract

Malicious traffic on the Internet has become an increasingly serious problem, and several artificial
intelligence (AI)-based malicious traffic detection methods have been proposed. Generally, AI-based
methods need numerous benign and specific types of malicious traffic training instances to achieve
better detection results. However, for attacks with only a few instances, known as the few-shot attacks,
these methods often perform poorly, and how to train a model for detecting few-shot attacks is a
huge challenge. For this problem, we propose a novel intrusion detection system based on genera-
tive adversarial networks and model-agnostic meta-learning. The system adopts a hybrid detection
mechanism where an anomaly-based classifier determines whether incoming traffic is malicious and
a signature-based classifier identifies the class of malicious traffic. In the system, the samples of few-
shot attacks are augmented by maximizing the use of meta-knowledge and then applied to assist
the detection of few-shot attacks to obtain better detection results. The experiments show that for
CSE-CIC-IDS2018 and Bot-IoT datasets, this system can detect malicious traffic with 94.3%/1.8%
TPR/FPR and 99.8%/0.1% TPR/FPR, respectively, and also can identify the class of the few-shot
attacks with 95.2% and 91.9% accuracy, respectively. Compared with other related methods, the sys-
tem improves the accuracy of identifying few-shot attacks on these two datasets by at least 2.2%
and 1.5%, respectively. Additionally, a parameter visualization process is designed, which shows the
fast-adaptive property and better generalization capability of the system.

Keywords: Intrusion detection, model-agnostic meta-learning, generative adversarial network, few-shot
attacks, imbalanced dataset

1 Introduction

Nowadays, the improving network communication
frequency contributes to the increasing amount

of intrusions on the Internet, especially in sixth-
generation (6G) networks and the public Internet
of Things (IoT) [1]. As a consequence, devices,
servers and all kinds of infrastructure are more
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vulnerable. By using maliciously crafted code, an
adversary can execute these intrusions to eaves-
drop or interrupt the normal working status of a
target machine [2]. In order to detect intrusions,
a rule-based network intrusion detection system
(NIDS) was first proposed, which can automati-
cally monitor network traffic packets and traces
based on a series of pre-defined rules [3]. However,
in rule-based NIDS, the design of rules is usually
difficult. In addition, the rule database needs to be
continuously updated to deal with new intrusions,
which brings non-negligible maintenance costs.

In order to overcome the shortcomings of
the rule-based mechanism, several artificial intel-
ligence (AI)-based NIDSes have been proposed.
These AI-based NIDSes learn detection knowledge
based on ready-made traffic features, which are
then applied to infer new incoming network traf-
fic. Although the traffic features need to be labeled
manually or automatically, AI-based NIDSes do
have lower maintenance costs than rule-based
ones, which require continuous manual iteration.
These NIDSes have applied various AI methods.
As for the categories of these NIDSes, some adopt
traditional machine learning (ML) methods such
as support vector machine (SVM) [4] and ran-
dom forest (RF) [5], others utilize deep learning
(DL) methods like deep neural network (DNN) [6].
They perform well on some intrusion classification
tasks where enough training samples are avail-
able, such as the identification Denial-of-Service
(DoS)/Distributed Denial-of-Service (DDoS) and
botnet attacks. Nevertheless, it is difficult to
obtain sample instances of some intrusions (e.g.,
SQL Injection [7] and Zero-day [8]) in real environ-
ments. These intrusions are known as “few-shot
attacks”, while other intrusions are named “non-
few-shot attacks”. If a dataset contains these
few-shot attacks, it may possess an imbalanced
construction where the proportion of some attack
labels is significantly small. An AI-based NIDS
trained on this dataset largely fails to classify
these attacks due to the lack of samples. This
problem is known as the imbalanced dataset.

A feasible way to solve this problem is to
augment instances for the few-shot attacks. The
generative adversarial network (GAN) is a com-
monly used tool to do so. Generally, a GAN
consists of two models, and they play a game
against each other to generate instances that fit

a target data distribution [9]. Our previous work
[10] has shown that GAN can be used to gen-
erate adversarial attacks to bypass and enhance
NIDSes. However, the training process of GAN
still needs sufficient samples to form a reasonable
target data distribution, which conflicts with the
reality of few-shot attacks.

Meta-learning is another available technique
for few-shot attack detection, since it can rapidly
transfer the meta-knowledge learned from the
non-few-shot traffic into the tasks for detecting the
few-shot attacks [11]. As a typical form of meta-
learning, model-agnostic meta-learning (MAML)
learns the optimized biased initial model parame-
ters as meta-knowledge [12]. Due to its knowledge
transfer characteristics [13, 14], MAML is applied
to NIDS and shows great performance on the few-
shot attacks. Unfortunately, MAML-based NID-
Ses may not be able to infer new few-shot attacks
with good generalization ability because the lim-
ited training samples are usually inadequate to
reflect the real data distribution. No matter how
excellent the meta-learning is, the detection of
few-shot attacks still lacks better generalization in
the imbalanced datasets.

To solve the aforementioned challenges, we
designed a Model-Agnostic Generation-Enhanced
Technology-based NIDS, named MAGET. It gen-
erates instances for few-shot attacks and utilizes
the generated instances to assist few-shot intru-
sion detection. It includes a GAN-based genera-
tion process and a hybrid detection mechanism.
The contributions of this paper are as follows:

• A novel knowledge transfer approach called
MAGET is proposed. This approach is intended
to realize few-shot intrusion generation to assist
with few-shot attack classification. The gener-
ation part draws on the idea of GAN, while
both the generation and classification parts are
MAML-based.

• A visual variation of model parameters is care-
fully designed and discussed. It explains the
differences and benefits of MAGET on fast-
adaptive property and better generalization
capability compared with the original MAML
and GAN theoretically.

• The MAGET outperforms baseline and
advanced methods on few-shot attacks in
signature-based classification, as demonstrated
by extensive experiments.
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The remainder of this paper is structured
as follows. Section 2 introduces the background
knowledge and the related works in this domain.
Section 3 explains the threat model and the sys-
tem design of MAGET. Section 4 describes the
workflow of MAGET. The experimental details
are given in Section 5. Section 6 provides the
parameter visualization. Conclusion and future
works are finally provided in Section 7.

2 Background and Related Works

This section introduces some background on intru-
sion detection and the used MAML and GAN.
Besides, the related works on few-shot attack
classification are reviewed in this section.

2.1 Background of intrusion detection

Intrusion detection technology was first proposed
by Jim Anderson [15], and now it has become
an important cybersecurity guardian juxtaposed
with the firewall. Generally, intrusion detection
technology can be divided into several types
according to different criteria. Among them, net-
work intrusion detection is a popular one, which
passively deploys nodes at gateways, routers or
relays. These nodes, known as NIDSes, can inspect
incoming traffic and detect potential behaviors
that sniff or destroy host systems [16].

Basically, NIDSes are categorized into
anomaly-based and signature-based [17]. The
former defines a set of normal behaviors based
on historical records, and the system will treat
the input as “anomaly” if it is not in the nor-
mal range. The latter defines a set of rules
that associate the suspicious events with the
concrete attack types, and the system classifies
current input based on these rules. Generally,
anomaly-based classification is better at sniffing
unknown intrusions, but may cause high false
positive rates, while signature-based classification
is effective at identifying rule-related attacks, but
unable to detect unknown malicious behaviors.
Additionally, there is a hybrid method that com-
bines these two types of classification [18], which
usually starts with an anomaly classification and
then associates the anomaly behaviors with the
corresponding signatures.

2.2 Background of MAML and GAN

MAML is one of the meta-learning strategies
with quick concept adaptability. A model is first
trained in the meta-training step based on prior
knowledge of a batch of training tasks TK

k=1,
where the prior knowledge is the initialized model
parameters Φ′ in MAML, and then the model
is used for solving the problem Ttest in a meta-
testing step [12]. More formally, as illustrated in
Equation (1), the goal of MAML is to find an opti-
mal Φ′ such that the base learner can finish a new
task as quickly as possible.

Φ′∗ = arg min
Φ′

ETk∼P (Tk)[ζTk
(O(DTk

, ζTk
|Φ′))]

(1)

where Tk is a task selected from the probability
distribution of tasks p(T ). O(DTk

, ζTk
|Φ′) is an

optimization procedure that utilizes predefined Φ′,
dataset and loss function from Tk. This equation
outputs updated weights that perform well on Ti.

GAN is another famous technique that intro-
duces game theory in neural network training for
feature generation [19]. Its architecture includes
two DL-based learners called generator (G) and
discriminator (Dis). The objective of G is to gen-
erate instances to bypass Dis whereas Dis is to
judge whether the input instances are from G or
a real dataset. The overall loss function of GAN
is shown in Equation (2), which consists of two
objective functions. The first one encourages Dis
to maximize log(Dis(x)) whereas the second one
motivates G to minimize log(1 − Dis(G(z))). In
this equation, x is the instance sampled from the
distribution of the real dataset Pdata and z is the
noise vector sampled from a defined distribution
P (·) (e.g., the Gaussian distribution). G can gen-
erate different instances of the same label with
different z. The training process of these two mod-
els is adversarial due to their objectives. Ideally,
G can generate authentic instances that fit Pdata

and confuse Dis after training.

ζGAN = ζDis + ζG

= Ex∼Pdata(x)[log(Dis(x))]+

Ez∼P (z)[log(1−Dis(G(z)))] (2)
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2.3 Related works of few-shot attack
classification

The typical studies on few-shot attack classifica-
tion are summarized in Table 1. Basically, these
studies are classified into meta-learning-based
methods that maximize the meta-knowledge uti-
lization, data augmentation methods that enrich
the imbalanced datasets, and hybrid methods. I1
means that the target label is the real few-shot
attack type, whose samples are hard to obtain
in reality. I2 denotes the usage of training opti-
mization for models with few-shot samples. I3
symbolizes showing the classification results of
every single few-shot attack. I4 denotes the usage
of data augmentation. I5 refers to the process
explanation of the proposed methods.

For meta-learning-based methods, Xu et al.[20]
proposed an FC-Net based on meta-learning to
detect the visualized network traffic. They claim
that their method performs well on the sub-
datasets that they constructed from the public
datasets, but the attack labels utilized in their
experiment are not real few-shot labels, which pos-
sess enough samples in the public datasets. The
real few-shot labels that have only a few samples in
the public datasets were not considered (e.g., SQL
Injection). Liang et al.[21] realized an optimized
intra/inter-class-structure-based variational few-
shot learning model to overcome the specific out-
of-distribution problem, so as to detect the attacks
in two imbalanced datasets more effectively. How-
ever, the performances on single few-shot sub-
categories were not measured. Concretely, their
experiment combined four subcategories of DoS
in CICIDS2017 [22] into one label and detected
NSL-KDD [23] at the level of four main cate-
gories. Other works [24][25][26] classified few-shot
attacks through a few training sets. However,
their detection results only show the overall per-
formance instead of the classification details of
specific few-shot attacks.

For data augmentation methods, SMOTE [27]
and GAN [9][28] are utilized to append the few-
shot attack samples. Nevertheless, the generation
process of these methods still relies on the lim-
ited training samples, which may not reflect the
real data distribution of few-shot attacks. Con-
sequently, these methods may be unstable. Fur-
thermore, for the GAN-based data augmentation

Table 1 Summary approaches for few-shot detection

Approaches Models I1 I2 I3 I4 I5

Meta learning

FC-Net [20] #  G# # #
OICS-VFSL [21] G#  # # #
FSL IDS [24] G#  G# # #
FS-IDS [25]   G# # #

FSL-Capsule [26] G#  # # #

Data augmentation
SMOTE [27] G# # G#  #
GAN [9]  #   #

IGAN-IDS [28] G#  #  #

Hybrid
FAML [29] #  #  #
MAGET      

“#” shows that the method does not pay attention to the issue,
“ ” shows that the method fully pays attention to the issue,
“G#” shows that the method partly pays attention to the issue.

method, its parameters may converge at the local
optimum due to the lack of generalization ability.

Additionally, FAML [29] uses MAML to
achieve GAN-based few-shot image generation
based on the meta-knowledge of other abundant
images. Its generation process is more fluent and
gets excellent results than directly training GAN
with few-shot samples. However, it is for image
generation rather than intrusion detection.

Overall, no literature exists that utilizes few-
shot intrusion generation to assist with few-shot
attack classification, especially showing the clas-
sification results for the few-shot attacks that are
hard to obtain in reality. Meanwhile, a suitable
explanation of the training process for the pro-
posed method is demanding. As a result, MAGET
is proposed to cover this gap.

3 Proposed method

We describe the threat model and system design
of the proposed MAGET. Meanwhile, all sym-
bols and abbreviations related to MAGET are
collected in Table 2 for reference.

3.1 Threat Model

A threat model of public IoT environment that
connects Internet is designed, where the NID-
Ses are deployed to detect the few-shot attacks
and other malicious traffic for IoT gateways and
servers. An abstract view is illustrated in figure 1,
which contains two parts, i.e., the device cluster
and the server cluster.

The device cluster includes IoT devices that
record physical data from industrial environments
and production processes. These devices work as a
bridge between physical and virtual space for the
whole system. The network packets collected by
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Table 2 List of Symbols and Abbreviations

Description Description Description
A Generated amount B Task batch size Ca Anomaly-based classifier
Cs Signature-based classifier D Dataset Df Full decoder
Dis Discriminator Ef Full encoder Ep Partial encoder
G Generator J Joint function K Meta-training task amounts
K ′ Meta-testing task amounts M Sample, query subset size Ms Support subset size
T Task x Original features xfunc Functional features
xgen Generated features xnonf Non-functional features xrecon Reconstructed features
ya Anomaly-based Label ys Signature-based Label z Gaussian noise vector
z0 Zero vector Φ Model parameters Φ′ Initial model parameters
η Learning rates for searching ξ Learning rates for updating ζ Loss function

Internet

IoT devices 

Data
exchanges

Intruders

Gateway
Gateway

Server cluster Device cluster 

MAGET-based
NIDSes

Flow-based
feature collector

Fig. 1 Overall threat model for public IoT that connects
Internet. A device cluster communicates with a server clus-
ter for data exchange. Intruders release malicious packets to
devices or gateways. MAGET-based NIDSes are bypassed
deployed to inspect them from massive normal traffic.

these devices are converged into a central gateway.
A flow-based feature collector is assumed to be
deployed at this gateway in a bypass model for
recording the global traffic flows.

The server cluster contains the IoT servers
that are responsible for providing all sorts of
commercial services for devices, such as real-time
interaction and data analysis. Another central
gateway is included to receive or send traffic with
the gateway in the device cluster. This gateway
also connects to Internet for web service usage.
A set of flow-based feature collectors are assumed
at both IoT servers and this central gateway to
record the global and local traffic flows.

All these collectors record the network flows
with statistical attributes, such as protocol type,
flow duration, and the incoming/outcoming num-
ber of bytes. An MAGET-based NIDS is linked to
every collector to inspect the network flows.

Intruders tend to choose the central gateways
and devices as attack entrances. They execute sev-
eral types of attack traffic under the network layer
and application layer, as follows:

DoS/DDoS. They attempt to paralyze the
target system with a great number of meaningless

traffic from massively compromised machines. The
traffic protocols include TCP, UDP, and HTTP.

Probing attacks. It collects information
about the target by scanning the whole system. It
includes Service Scan and OS Fingerprint.

Information theft. It is supposed to compro-
mise the target server and steal sensitive creden-
tials or unauthorized data on the SSH service. It
includes Keylogging and Data Exfiltration.

Web attack. It intrudes on the server cluster
through the Internet at the application layer. It
includes SQL Injection that forces the server to
reply information, Cross-Site Scripting (XSS) that
injects scripts, and Bruteforce over HTTP to gain
access by combinations of username and password.

3.2 System design

MAGET is proposed to generate few-shot attack
instances to assist few-shot attack classification.
MAGET is both GAN-based and MAML-based,
its system design is shown in figure 2. Basically,
MAGET has a GAN-based attack generation
part and a prediction part that includes both
anomaly-based and signature-based classification
models. Both parts are trained in a MAML-based
way. Concretely, the first part is pre-trained by
non-few-shot attacks and fine-tuned by few-shot
attacks to achieve attack generation. The second
part is pre-trained by non-few-shot traffic and
fine-tuned with both original traffic and gener-
ated attacks. Two fine-tune steps are supposed
to make use of the optimal initial parameters
trained by non-few-shot traffic in the pre-trained
steps. MAGET also includes a dataset division
part based on the rule of MAML and following
the work [20][30]. This part converts the original
dataset into a multitask form to adapt the train-
ing process in a MAML way. Additionally, the
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Task 

Attack

Latent

Normal 
sampling Attack generation part

Task 

Attack
Generative

Attack
Benign Prediction part

Attack? Drop
No

Yes

DDoS, Bruteforce, ...

Latent

Task 

Attack
Benign

Task 

Attack
Benign

K tasks

Meta-training

Sample
set

Query
set

Dataset division part

Task 
Attack
Benign

K' tasks

Meta-testing

Support
set

Test
set

Task 
Attack
Benign

Task 

Attack
Benign

Fig. 2 The system design of MAGET. Data division part divides dataset into four subsets for meta-learning-based usage.
Attack generation part applies attack instances to achieve data augmentation based on a hybrid structure of an auto encoder
(Ep, G) and GAN (G,Dis). Prediction part applies original and generated instances with another auto encoder (Ef , Df )
to extract features, which are then classified by an anomaly-based classifier (Ca) and signature-based classifier (Cs).

attack generation part can only modify the non-
functional features of an attack vector, which do
not reflect the functionality of this vector [31].
Meanwhile, auto-encoders are used in both attack
generation and prediction parts for stable training
and mode-collapse prevention [32].

Dataset division part. All samples are
divided into four subsets, which are the sample,
query, support and test sets. Each set contains
benign instances and instances of one attack type.
The sample and query sets are combined into a
meta-training set. This set contains attack types
that have sufficient samples and is used to search
and verify the optimal initial model parameters
Φ′ for models. The query and test sets are com-
bined into a meta-testing set. This set contains all
attack types with a few samples to fine-tune and
test models. Indeed, only the support set contains
the training samples from few-shot attacks. As for
subset size, the meta-training set has K tasks,
and each task has M samples. The meta-testing
set has K ′ tasks, K ′ equals the number of total
attack types. Each task in the support set pos-
sesses Ms samples. Based on the dataset division,
only the attack samples are selected to gener-
ate attack samples in the attack generation part,
whereas the generative samples, original attacks
and benign instances are mixed and put into the
prediction part.

Attack generation part. Initially, the fea-
tures of an original attack vector are divided
into functional features xfunc and non-functional
features xnonf . Second, xnonf are fed into an
encoder Ep, which then outputs a low-dimensional
latent vector. Third, this vector is combined with
another noise vector z sampled from the normal
distribution. The combined vector is then fed into
a generator G. Fourth, the output features from G
are connected with xfunc, which are then treated
as a generated attack instance xgen. Overall, the
formulation of xgen can be expressed as Equation
(3), where J is a joint function. A discriminator
Dis is also trained to examine the reality of xgen.

xgen = J(xfunc, G(Ep(xnonf ), z) (3)

Prediction part. Initially, the features are
converted into latent vectors by an encoder
Ef . This encoder is different from Ep because
it requires full features rather than only non-
functional features. Correspondingly, a decoder
Df is required as an auxiliary model to train Ef by
minimizing the reconstruction loss. The latent vec-
tors from Ef are then put into an anomaly-based
classifier Ca. If Ca classifies one vector as nor-
mal, this vector will be discarded. Otherwise, this
vector is put into a signature-based classifier Cs

for sub-category classification. The performance
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Fig. 3 MAGET training progress. First, sample and query
sets are used to find the optimal initialization parameters
for Ep, G,Dis. Second, they are fine-tuned by the support
set and used for attack generation. Third, the sample and
query sets are also used to find the optimal initialization
parameters for Ef , Df , Ca, Cs. Fourth, they are fine-tuned
by the support set and generated attack. Finally, test set
is utilized to calculate the classification loss.

of Cs is the research focus in MAGET since it
reflects the real classification situation for every
few-shot attack, whereas Ca treats all few-shot
and non-few-shot attacks as anomalies.

4 MAGET training progress and workflow

The training progress of MAGET is illustrated
in figure 3. Overall, all models in MAGET are
trained by non-few-shot traffic (i.e., the sam-
ple and query sets) to get optimal initialization
parameters and then fine-tuned by a small amount
of traffic that contains few-shot attacks (i.e., the
support set). Meanwhile, few-shot attacks in the
support set are augmented to improve the capabil-
ities of the prediction models on few-shot attacks.

Concretely, a pre-training algorithm named
“generation parameter search algorithm” is first
applied to the attack instances in the sample
and query sets. This algorithm is responsible for
using non-few-shot attack samples to find the opti-
mal initialization parameters for models in the
attack generation part (i.e., Ep, G, Dis). This
algorithm outputs Φ′

Ep
,Φ′

G,Φ
′
Dis. Then, “attack

generation algorithm” is used to both fine-tune
the model parameters {ΦEp

,ΦG,ΦDis} and imple-
ment attack generation based on the instances
of few-shot attack types in the support set. All
generated attack instances are then utilized to
enrich the support set. Next, both benign and
attack samples in the sample and query sets are
fed into the prediction part, and a new algorithm
named “prediction parameter search algorithm”
is adopted to look for the suitable initialization
model parameters {Φ′

Ef
,Φ′

Df
,Φ′

Ca
,Φ′

Cs
}. Based

on these parameters, one more algorithm “predic-
tion fine-tuning algorithm” is utilized to fine-tune
the models with all the samples in the enriched
support set, including the generative attacks, orig-
inal attacks and benign instances. Finally, the test
set measures the fine-tuned models based on the
classification losses of Ca and Cs.

After the training, Ef , Ca, Cs constructs
MAGET-based NIDS. Its workflow is illustrated in
figure 4. Hidden in massive normal traffic packets,
the malicious packets launched by the intrud-
ers are first filtered by a firewall based on some
defined rules. Next, the features of these pack-
ets are collected by the bypassed collector, which
are then processed by the MAGET-based NIDS:
Ef extracts the features; Ca identifies those mali-
cious packets as anomalies and raises an alarm,
whereas normal packets are dropped; Cs clas-
sifies these anomalies into sub-categories. Then,
an extra analysis module is deployed to sense
the nature of the anomalies, including their goal,
means and calamity degree. Based on all the
obtained and analyzed information, a mitigation
module is responsible for choosing a set of appro-
priate options to mitigate the impact of these
malicious packets. These options include dropping
these malicious packets, blocking traffic from the
source address, resetting the connections, and re-
configuring the rules in the firewall to prevent
future attacks.

The details of the four contained algorithms in
MAGET training progress are described below.

4.1 Generation parameter search
algorithm

This algorithm is designed to gain optimized Φ′
G,

Φ′
Dis, Φ′

Ep
with the attack instances in the sample

and query sets. Thus, this algorithm requires the
losses of Ep, G and Dis. Considering that Ep and
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MAGET-based
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feature collector

Normal packets

Malicious packets

Packet filter
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Anomaly-based
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Drop

Signature-based
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DoS/DDoS
Probing attacks

Information theft
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Alert

Analysis m
odule

M
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Fig. 4 MAGET-based NIDS workflow. Incoming packets are first filtered by the firewall and then collected by the feature
collector. The NIDS first extracts these features by Ef , and then identifies the malicious packets from massive normal
packets by Ca. Cs classifies the malicious packets into concrete sub-categories. Next, an analysis module tries to deduce their
goals, means and calamity degrees. Finally, a mitigation module takes measures to mitigate the impact of these packets.

G play the function of an auto-encoder, a recon-
structed attack sample xrecon is calculated by
Equation 4. Hence, a mean-squared loss is defined
at Equation (5), where M is the amount of the
sample and query sets. In addition, xrecon is dif-
ferent from xgen because it utilizes a fixed zero
vector z0 instead of a Gaussian noise vector.

xrecon = J(xfunc, G(Ep(xnonf ), z0) (4)

ζEp
=

1

M

M∑
i=1

(x(i)
recon − x(i))2 (5)

Then a structure of GAN loss is appended on G
and Dis. In addition to minimizing the mean-
squared loss, G also generates xgen to bypass Dis.
Thus, the loss of G is defined as follow:

ζG =
1

M

M∑
i=1

{(x(i)
recon − x(i))2 − log[Dis(x(i)

gen)]}

(6)

Dis is supposed to distinguish xgen and x.
Concretely, its loss function is illustrated in
Equation (7):

ζDis = − 1

M

M∑
i=1

{log[1−Dis(x(i)
gen)] + log[Dis(x(i))]}

(7)

The pseudo-code of this algorithm is listed in
Algorithm 1. First, Φ′

G, Φ′
Dis and Φ′

Ep
are assigned

with random values. Second, a double loop struc-
ture is utilized, where B tasks are sampled as a
task batch in its outer loop while each task is tra-
versed in its inner loop. For every task in the inner

loop (line 4− 12), ζEp
, ζG and ζDis are calculated

with the sample set. Then these losses are used
to figure out ΦG, ΦDis and ΦEp

based on a one-
step gradient descent from Φ′. The learning rates
in this loop are denoted as {ηG, ηDis, ηEp

}. For
every task batch in the outer loop (line 13 − 18),
ζEp

, ζG and ζDis are calculated with the query
set. Φ′

G, Φ′
Dis and Φ′

Ep
are optimized with average

losses based on B sets of model parameters {ΦG,
ΦDis, ΦEp

}. The learning rates in this loop are
denoted as {ξG, ξDis, ξEp

}. In summary, this is a
two-step updating process for Φ′. The sample set
promotes Φ′ to take a step initially, then the query
set helps Φ′ to find the second-step direction, and
Φ′ is indeed updated on this direction. Addition-
ally, η is generally set larger than ξ because η is
utilized to search the second-step direction while ξ
is utilized to update the model parameters. Larger
η can find more potential directions as references,
whereas smaller ξ makes stable training progress.

4.2 Attack generation algorithm

This algorithm fine-tunes Φ′ and generates
instances for each few-shot attack type according
to the attack instances in the support set. The
amount generated for each type should be larger
than A, which is defined beforehand.

The pseudo-code of this algorithm is displayed
in Algorithm 2. In this algorithm, the amount
of the support set is denoted as Ms, which is
different for each task. Ms is treated as M in
the application of Equations (5), (6), (7). This
algorithm first trains Ep, G and Dis with the
mean-squared loss and the generative adversarial
loss at line 2−11. The learning rates in the former
are {ξEp

, ξG, ξDis}. Then the trained models are
utilized to generate instances at line 12− 23 until
the generated amount reaches A. Dis is applied
to constantly judge the generated instances and

8



Algorithm 1 Generation parameter search algorithm

Require: the attack set, subset size M , task batch size B, learning rates ηG, ηDis, ηEp
, ξG, ξDis, ξEp

;
Output: optimized initialization parameters Φ′

Ep
,Φ′

G,Φ
′
Dis

1: Randomly initialize Φ′
Ep

,Φ′
G,Φ

′
Dis

2: while not done do
3: Sample batch of tasks {T}B from the attack set
4: for every task Ti in {T}B do
5: ΦEp ,ΦG,ΦDis ← Φ′

Ep
,Φ′

G,Φ
′
Dis

6: Obtain X = {x(1), ..., x(M)} from the sample set
7: Get Xgen, Xrecon by Equation (3), (4), get ζEp , ζG, ζDis by Equation (5), (6), (7)

8: Φ
(i)
Ep
← ΦEp

− ηEp

dζEp (ΦEp )

dΦEp
, Φ

(i)
G ← ΦG − ηG

dζG(ΦG)
dΦG

, Φ
(i)
Dis ← ΦDis − ηDis

dζDis(ΦDis)
dΦDis

9: end for
10: Obtain X = {x(1), ..., x(M)} from the query set
11: Get Xgen, Xrecon by Equation (3), (4), get ζEp , ζG, ζDis by Equation (5), (6), (7)

12: Update Φ′
Ep

by Φ′
Ep
− ξEp

1
B

∑B
i=0

dζEp (Φ
(i)
Ep

)

dΦ′
Ep

13: Update Φ′
G by Φ′

G − ξG
1
B

∑B
i=0

dζG(Φ
(i)
G )

dΦ′
G

14: Update Φ′
Dis by Φ′

Dis − ξDis
1
B

∑B
i=0

dζDis(Φ
(i)
Dis)

dΦ′
Dis

15: end while

drop the unqualified ones. Finally, these generated
instances are appended to the support set for the
prediction part.

4.3 Prediction parameter search algorithm

This algorithm is designed to gain optimized Φ′
Ef

,

Φ′
Df

, Φ′
Ca

and Φ′
Cs

with both attack and benign
instances in the sample and query sets. Thus,
this algorithm requires the losses of Ef , Df , Ca

and Cs. Considering that Ef and Df not only
cope with non-functional features but all fea-
tures, a new mean-squared loss ζrecon is defined in
Equation (8) for both two models.

ζrecon =
1

M

M∑
i=1

[Df (Ef (x(i)))− x(i)]2 (8)

For Ca and Cs, their loss functions are shown
in Equations (9)(10) with a binary cross-entropy
loss and a cross-entropy loss. In Equation (9),
ya ∈ {0, 1}, and “0” and “1” represent “benign”
and “anomaly”, respectively. In Equation (10), ys
refers to the corresponding attack label integer
and 1 ≤ ys ≤ K ′.

ζCa
=

1

M

M∑
i=1

{ya ∗ log[Ca(Ef (x(i)))]+

(1− ya) ∗ log[1− Ca(Ef (x(i)))]} (9)

ζCs = − 1

M

M∑
i=1

{ys ∗ log[Cs(Ef (x(i)))]} (10)

The pseudo-code of this algorithm is shown
in Algorithm 3. After randomly initializing Φ′

Ef
,

Φ′
Df

, Φ′
Ca

and Φ′
Cs

, one outer loop and two inner
loops are called. For each task in the first inner
loop (line 4 − 11), ζrecon and ζCa

are calculated
with the sample set, which motivates ΦEf

, ΦDf

and ΦCa
to achieve one-step gradient descent. For

each task in the second inner loop (line 12 − 17),
ζCs

is calculated with the sample set, which pro-
motes ΦCs

to update gradient. For each task batch
in the outer loop (line 18−24), ζrecon, ζCa

and ζCs

are calculated with the query set. Finally, Φ′
Ef

,

Φ′
Df

, Φ′
Ca

and Φ′
Cs

are optimized with average

losses based on B sets of model parameters {ΦEf
,

9



Algorithm 2 Attack generation algorithm

Require: the attack set, subset size Ms, Φ′
Ep

, Φ′
G, Φ′

Dis, A, learning rates ξG, ξDis, ξEp ;
Output: generated attack set D

1: ΦEp
,ΦG,ΦDis ← Φ′

Ep
,Φ′

G,Φ
′
Dis

2: while not done do
3: for every task Ti in the attack set do
4: Obtain X = {x(1), ..., x(Ms)} from the support set
5: Get Xgen, Xrecon by Equation (3), (4), get ζEp

, ζG, ζDis by Equation (5), (6), (7)

6: Update ΦEp
, ΦG, ΦDis by ΦEp

− ξEp

dζEp (ΦEp )

dΦEp
, ΦG − ξG

dζG(ΦG)
dΦG

, ΦDis − ξDis
dζDis(ΦDis)

dΦDis

7: end for
8: end while
9: Define D as an empty dataset

10: for every task Ti in the attack set do
11: Obtain X = {x(1), ..., x(Ms)} from the support set
12: Get Xgen by Equation (3)
13: for every sample x in Xgen do
14: if Dis judge x as real and D.length < A then
15: D.append(x)
16: end if
17: end for
18: if D.length ≥ A then
19: break
20: end if
21: end for

ΦDf
, ΦCa

, ΦCs
}. Same as Algorithm 1, the learn-

ing rates in the inner loop are {ηEf
, ηDf

, ηCa
,

ηCs
}, while the ones in the outer loop are {ξEf

,
ξDf

, ξCa
, ξCs

}.

4.4 Prediction fine-tuning algorithm

this algorithm fine-tunes ΦEf
, ΦDf

, ΦCa
and ΦCs

based on Φ′ of Algorithm 3 with the appended
support set, whose size is denoted as M ′

s. M ′
s

equals to Ms + A if the attack in the task is
few-shot. Otherwise, M ′

s equals to Ms.
The fine-tuning process is illustrated in Algo-

rithm 4. This process continuously trains Ef , Df ,
Ca and Cs with the mean-squared loss, the binary
cross entropy loss and the cross entropy. The
learning rates are {ξEf

, ξDf
, ξCa

, ξCs
}. After the

fine-tuning, ΦEf
, ΦCa

and ΦCs
as a whole can

achieve both anomaly-based and signature-based
classification. The few-shot attacks are supposed
to be identified by ΦCs

.

5 Experiments

This section introduces the experimental results of
MAGET. First, the setup and the pre-processing
steps of the experiment are introduced. Second,
the model training processes are explained, includ-
ing the loss variation of each model and the
generation quality variation of G. Next, the exper-
imental results for anomaly-based and signature-
based classification of MAGET are listed and
evaluated, while the latter is critically compared
with advanced methods. Then, the effectiveness
and the efficiency of the few-shot generation are
discussed. Finally, the limitations of MAGET are
given.

5.1 Experimental setup

Datasets. Two public datasets have been applied,
CSE-CIC-IDS2018 [33] from Canadian Institute
for Cybersecurity and Bot-IoT [34] from Cyber
Range Lab of UNSW Canberra.

CSE-CIC-IDS2018 contains abstract represen-
tations of events and behaviors on the network
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Algorithm 3 Prediction parameter search algorithm

Require: the mixed set, subset size M , task batch size B, learning rates
ηEf

, ηDf
, ηCa

, ηCs
, ξEf

, ξDf
, ξCa

, ξCs
;

Output: optimized initialized Φ′
Ef

,Φ′
Df

,Φ′
Ca

,Φ′
Cs

1: Randomly initialize Φ′
Ef

,Φ′
Df

,Φ′
Ca

,Φ′
Cs

2: while not done do
3: Sample batch of tasks {T}B from the mixed set
4: for each task Ti in {T}B do
5: ΦEf

,ΦDf
,ΦCa

,ΦCs
← Φ′

Ef
,Φ′

Df
,Φ′

Ca
,Φ′

Cs

6: Obtain X = {x(1), ..., x(M)} from the sample set, Ya = {y(1)a , ..., y
(M)
a } s.t. ya ∈ {0, 1}

7: Get ζrecon, ζCa
by Equations (8), (9)

8: Φ
(i)
Ef ,Df

← ΦEf ,Df
− ηEf ,Df

dζrecon(ΦEf ,Df
)

d(ΦEf
+ΦDf

) , Φ
(i)
Ca
← ΦCa

− ηCa

dζCa (ΦCa )
dΦCa

9: end for
10: for every task Ti in {T}B do

11: Obtain X = {x(1), ..., x(M)} from the sample set, Ys = {y(1)s , ..., y
(M)
s } s.t. 1 ≤ ys ≤ K ′

12: Get ζCs
by Equation (10), Φ

(i)
Cs
← ΦCs

− ηCs

dζCs (ΦCs )
dΦCs

13: end for
14: Obtain X = {x(1), ..., x(M)} from the query set

15: Obtain Ya = {y(1)a , ..., y
(M)
a } s.t. ya ∈ {0, 1}, Ys = {y(1)s , ..., y

(M)
s } s.t. 0 ≤ ys ≤ K ′

16: Get ζrecon, ζCa
, ζCs

by Equation (8), (9), (10)
17: Update Φ′

Ef ,Df
, Φ′

Ca
, Φ′

Cs
by

Φ′
Ef ,Df

−ξEf ,Df

1
B

∑B
i=0

dζrecon(Φ
(i)
Ef ,Df

)

d(Φ′
Ef

+Φ′
Df

) , Φ′
Ca
−ξCa

1
B

∑B
i=0

dζCa (Φ
(i)
Ca

)

dΦ′
Ca

, Φ′
Cs
−ξCs

1
B

∑B
i=0

dζCs (Φ
(i)
Cs

)

dΦ′
Cs

18: end while

Algorithm 4 Prediction fine-tuning algorithm

Require: the mixed set, subset size M ′
s, Φ′

Ef
, Φ′

Df
, Φ′

Ca
, Φ′

Cs
, learning rates ξEf

, ξDf
, ξCa

, ξCs
;

Output: Final detection model set {ΦEf
, ΦCa

, ΦCs
};

ΦEf
, ΦDf

, ΦCa , ΦCs ← Φ′
Ef

, Φ′
Df

, Φ′
Ca

, Φ′
Cs

1: while not done do
2: for every task Ti in the mixed set do
3: Obtain X = {x(1), ..., x(M ′

s)} from the support set

4: Obtain Ya = {y(1)a , ..., y
(M ′

s)
a } s.t. ya ∈ {0, 1}, Ys = {y(1)s , ..., y

(M ′
s)

s } s.t. 1 ≤ ys ≤ K ′

5: Get ζrecon, ζCa , ζCs by Equation (8), (9), (10)
6: Update ΦEf ,Df

, ΦCa , ΦCs by

ΦEf ,Df
− ξEf ,Df

dζrecon(ΦEf ,Df
)

d(ΦEf
+ΦDf

) , ΦCa − ξCa

dζCa (ΦCa )
dΦCa

, ΦCs − ξCs

dζCs (ΦCs )
dΦCs

7: end for
8: end while

including seven main network attack scenarios
(i.e., Bruteforce, Heartbleed, Botnet, DoS, DDoS,
Web attacks and Infiltration). To simulate and
collect these attack instances, 50 nodes of attack

infrastructures and 420 hosts of victim organiza-
tions have been deployed. All collected network
traffics are converted into 80-feature vectors by
CICFlowMeter [35].
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Table 3 Overall Characteristics of CSE-CIC-IDS2018 and Bot-IoT

Dataset CSE-CIC-IDS2018 (CCI) Bot-IoT (BI)

Release Year 2018 2019

Platform/Tool Windows and Linux workstations, CICFlowMeter VMs of Windows, Ubuntu and Kali, Node-red, Argus

Feature amount 79 (except “Label”) 29 (46 in 5% subset)

Features Destination Port, Idle Std, Bwd Packet Length Std, ... eflgs, proto, state, pkts, bytes, dur, spkts, dpkts, ...

Numbered
Labels

0(Benign), 1(Bot), 2(DDoS LOIC HTTP), 3(FTP Brute-
force), 4(SSH Bruteforce), 5(DoS GoldenEye), 6(DoS
Slowloris), 7(DoS Hulk), 8(DoS SlowHTTPTest), 9(DDoS
HOIC), 10(Infiltration), 11(DDoS LOIC UDP), 12(Brute-
force Web), 13(Bruteforce XSS), 14(SQL Injection)

0(Normal), 1(DoS TCP), 2(DoS UDP), 3(DDoS TCP),
4(DDoS UDP), 5(Service Scan), 6(OS Fingerprint), 7(DoS
HTTP), 8(DDoS HTTP), 9(Keylogging), 10(Data Exfiltra-
tion)

Bot-IoT is a state-of-the-art dataset for profil-
ing the combination of normal and botnet under
an IoT-specific network. Node-red [36] was utilized
to simulate IoT services. Concretely, the network
traffic was collected under a testbed including
multiple Virtual Machines (VMs) with firewalls
and taps, which was then transferred into CSV
form by Argus [37]. Additionally, the authors also
provided a 5% subset as a smaller and more man-
ageable version. The details of these datasets are
listed in Table 3. For convenience, CCI and BI are
used for short in the following tables and figures.

Evaluation metrics. Based on True Nega-
tive (TN), True Positive (TP ), False Negative
(FN) and False Positive (FP ), several mathemat-
ical metrics are adopted for both anomaly-based
and signature-based models, including Accuracy
(Acc), True Positive Rate (TPR), False Positive
Rate (FPR), Precision (Pre), Recall (Rec) and F1-
score. Acc measures the model performance in the
most common way. For the anomaly-based model,
TPR reflects the ratio of correctly detected intru-
sions, and FPR shows the ratio of the normal
samples that are incorrectly classified as intru-
sions. For the signature-based model, Pre quanti-
fies the number of correct intrusions predicted by
the model, Rec plays the same role as TPR, and
F1-score judges the model by the average of these
two indicators.

Besides, Receiver Operating Characteristic
(ROC) curve is used to visualize the relationship
between TPR and FPR for the anomaly-based
model with different output thresholds. Area
Under Curve (AUC), the entire area underneath
the ROC curve, is used to measure aggregate per-
formance across all these thresholds. A confusion
matrix is used to show the classification details of
the signature-based model.

As for the performance of G, Fréchet Incep-
tion Distance (FID) is calculated, which reflects
the quality of generated instances based on the

Multi
Classifier

TrainingTask 

Attack

Task 

Generative
Attack

FID
Calculation

Latent

Fig. 5 FID calculating workflow for attack instances.
A DNN-based multi-classifier is trained based on non-
functional features of attack instances. Then, it is trans-
fered as the pre-trained feature extractor for FID calculat-
ing except its last layer.

distance between generated and real vectors in
feature space. Unlike directly utilizing Inception
V3 [38] as a pre-trained feature extractor in the
domain of the image classification, the calcula-
tion process of the FID in our experiments is
well-designed as shown in figure 5. First, the non-
functional features of the original attack instances
are utilized to train a DNN-based multi-classifier.
Second, this classifier deletes its last layer and
then works as a feature extractor for all attack
instances. Third, FID is calculated based on the
latent vectors from this extractor.

Hyper-parameters definition. The config-
uration of hyper-parameters is defined in Table 4.
Adam was chosen as the optimizer for each model.
The learning rates η and ξ are set to 0.4 and 0.001.
All models share the same η and ξ because these
models do not differ much on scale. As for subset
construction, the sample and query sets are sam-
pled from non-few-shot traffic. These two sets have
the same size of K ×M . To make use of the few-
shot attacks in these two datasets, 70% few-shot
attack samples are chosen as training samples, and
they are included in the task of the support set.
Also, the support set contains 2000 instances to
in non-few-shot tasks. The test set contains the
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final remaining instances in these two datasets.
Additionally, the amount of every label in this
set is upsampled or downsampled into 1000 for
averaging the classification contribution per label.

Comparison setting. SVM, RF, MAML and
GAN-enhanced DNN are chosen as baseline meth-
ods for comparison. SVM utilizes linear kernel
with penalty 1. RF possesses 100 trees with
gini criterion. MAML applies the same subsets
as the proposed MAGET, but the support set
is not appended. GAN-enhanced DNN adopts
a DNN to classify the datasets appended by
a vanilla GAN. To verify MAGET effectiveness
on signature-based classification, generative-based
methods including G-IDS [39] and DDPM [40],
ML-based methods including SafeML [41], MMM-
RF[42], DL-based methods including GRU-GBM
[43], CNN-LSTM [44], RideNN-DNFN [45], and
DIS-IoT [46] are reproduced as advanced meth-
ods for Cs comparison. Considering few meta-
learning-based works for signature-based intrusion
classification, FC-Net [20] and FSL-Capsule [26]
are reproduced with adjustment to achieve multi-
classification (the input/output of C-Net and the
dimension of Delta Score are adjusted in FC-Net
whereas the input of Similarity metric, Sigmoid
function and output dimension are adjusted in
FSL-Capsule). All methods have been repeated 7
times to obtain the average results with upper and
lower bounds.

5.2 Pre-processing steps

After the dataset division, some pre-processing
steps are required for the execution of MAGET.

First, all subsets were normalized to allevi-
ate the errors from the big values. Concretely, all
features were mapped to corresponding positive
numbers less than 1 by Equation (11).

x′
(i) =

x(i) − xmin

xmax + xmin
(11)

Second, the categorical features in all subsets
were converted into binary features by one-hot
encoding. Specifically, the features of destination
port (i.e., “Dst Port”, “sport” and “dport”) were
not processed directly since it possesses thousands
of values. Instead, the destination ports with less
than 500 training samples were combined as a new
binary feature “Dst Port Others”, whereas other

destination ports were encoded to their respective
binary features.

Third, all features in subsets were divided into
functional and non-functional ones for attack gen-
eration in the figure 2. This division includes two
steps. The first step selects all categorical features
as functional features by following the work [47].
One advantage is that the features such as pro-
tocol and destination port are directly treated as
functional. This ensures compliance with the net-
work protocol format of the generated attacks.
The second step follows the work [48], where the
authors divided CICIDS2017 by utilizing the anal-
ysis from the creator of this dataset [22]. The
analysis is conducted by RandomForestRegressor
[49] to calculate the importance of each feature for
each attack type. Thus, the second step uses this
analysis to obtain the top five important numer-
ical features in each attack type, which are then
treated as functional features. These features with
analyzed weights are recorded in Table A.1, and
then combined together. As a result, the func-
tional features are shown in Table 5. It should
be noted that the second step is different from
the previous works [48, 50], which coped with the
attack generation based on the functional features
of the current attack type. One reason is that
Algorithm 1 finds the optimized Φ′

G based on all
attack types rather than one type as the meta
knowledge.

5.3 Training process

Loss variations. The loss variations of all seven
models on both CSE-CIC-IDS2018 and Bot-IoT
are shown in figure A.1. Overall, the optimizer of
each model seeks the best Φ that minimizes the
defined training loss.

Concretely, training losses of Ep, G,Dis for
each batch are illustrated in sub-figures A.1(a),
(b), (e), (f), where Ep, G,Dis refer to “Encoder”,
“Generator” and “Discriminator” respectively. All
losses eventually converge, where ΦEp

reaches 0
and ΦDis is close to 0.69. The former shows a
low reconstructed error, whereas the latter indi-
cates that Dis is unable to classify the generated
instances from G.

Meanwhile, training losses of Ef , Df , Ca, Cs

for each batch are illustrated in sub-figures A.1(c),
(d), (g), (h). “Encoder/Decoder” refers to the loss
of Ef and Df considering that these two models
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Table 4 Hyper-parameters configured for constructing and training MAGET

Hyperparameters Values or selections Hyperparameters Values or selections

Chosen optimizer Adam B,A 10, 1000

ηEp
, ηG, ηDis 0.4 ηEf

, ηDf
, ηCa

, ηCs
0.4

ξEp
, ξG, ξDis 0.001 ξEf

, ξDf
, ξCa

, ξCs
0.001

Epochs 50 Layer types Linear with batch normalization

Output size of Ep, Ef

and size of z
16 Activation functions Sigmoid (last layer of Dis, Ca),

Tanh (last layer of G), Relu

Sample, query set size 16000(K = 1000,M = 16) Test set size 14000 (CCI),10000 (BI)

Support set size Ms = 1470 (DDoS LOIC UDP), Ms = 519 (Bruteforce Web), Ms = 195 (Bruteforce XSS),
Ms = 73 (SQL Injection), Ms = 520 (DoS HTTP), Ms = 348 (DDoS HTTP), Ms = 30
(Keylogging), Ms = 3, Ms = 2000 (Non-few-shot tasks), K′ = 14 (CCI), 10 (BI)

Few-shot numbered
labels

CCI: 11 (DDoS LOIC UDP), 12 (Bruteforce Web), 13 (Bruteforce XSS), 14 (SQL Injection);
BI: 7 (DoS HTTP), 8 (DDoS HTTP), 9 (Keylogging), 10 (Data Exfiltration)

Table 5 Functional features of CSE-CIC-IDS2018 and Bot-IoT

CCI
Categorical: Protocol, Dst Port
Numerical: Flow Pkts/s, Flow IAT Std, Pkt Size Avg, Pkt
Len Max, Pkt Len Std, Init Fwd Win Byts, Init Bwd Win
Byts, Bwd Seg Size Avg, Bwd Pkts/s, Bwd Header Len, Bwd
Pkt Len Mean, Bwd Pkt Len Max, Bwd Pkt Len Std, Fwd
Act Data Pkts, Fwd Pkts/s, Fwd Pkt Len Max, Fwd Pkt
Len Std, Fwd Seg Size Avg, Fwd Pkt Len Mean, Fwd Seg
Size Min, Fwd Header Len, Subflow Bwd Pkts, Subflow Fwd
Byts, Tot Bwd Pkts, Tot Fwd Pkts, TotLen Fwd Pkts

BI
Categorical: proto, state, sport, dport
Numerical: AR P Proto P Dport, AR P Proto P Sport,
ltime, sbytes, AR P Proto P SrcIP, TnP PDstIP,
N IN Conn P DstIP, N IN Conn P SrcIP, TnBPDstIP,
mean, drate, TnP Per Dport, TnP PerProto, sum, dur,
Pkts P State P Protocol P DestIP, stddev

possess the same loss (i.e., the loss of Equation
(8)). “Anomaly classifier” and “Signature classi-
fier” refer the losses of Ca and Cs, respectively.
During the training, the loss of Ef and Df reach
0, while the losses of Ca and Cs keep decreasing,
and finally stabilizes at low values.

FID variation. FID is utilized to show the
generation quality of G. As a result, the FIDs of
the generated instances based on few-shot attacks
are shown in four sub-figures of figure A.2, where
each epoch is recorded during the use of Algo-
rithms 1 and 2. Overall, the FID values of all
attack types basically decrease from the begin-
ning, and finally maintain a low value below 100.
It indicates that these instances are trained by
Algorithms 1 and 2 to obey the data distribution
as closely as possible to original attacks. Further-
more, two interesting observations exist in these
sub-figures. First, the curves in Algorithm 1 are
rougher than most curves in Algorithm 2. One
explanation is that Algorithm 1 utilizes multiple
attack labels to find the optimal Φ. Compared
with Algorithm 2, which only uses a single attack

label, the quality of samples generated by Algo-
rithm 1 is more unstable. Second, although most
curves in Algorithm 2 are smooth, Keylogging
and Data Exfiltration in sub-figure A.2(d) still
have obvious fluctuations, one reason is the small
training amounts (i.e., 30 and 3).

5.4 Results of anomaly-based classification
and evaluation

This part shows the performance of the proposed
Ca, whose objective is to classify attacks of all
types from the whole traffic.

The average ROC curves of Ca and other base-
line methods for two datasets are recorded and
depicted in figure A.3, where “Anomaly classifier”
refers to Ca. As can be seen from the left sub-
figure, compared with other baseline methods, Ca

has the best performance at the optimal threshold
on the CSE-CIC-IDS2018 dataset. Specifically, it
achieves 94.3% TPR and 1.8% FPR at this point.
The right sub-figure shows that all methods have
nearly perfect ROC curves on the Bot-IoT dataset.
In fact, Ca achieves 99.8% TPR and 0.1% FPR at
the optimal threshold of its curve. One reason is
that the task of anomaly detection on Bot-IoT is
relatively easy.

Based on these ROC curves, the AUCs of
Ca and other baseline methods are presented
in Table 6. For the CSE-CIC-IDS2018 dataset,
Ca possesses the highest AUC with a mean of
96.5%. This means that at the optimal threshold
in the ROC curve, Ca possesses a higher TPR
while maintaining a lower FPR compared to other
methods.
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Table 6 AUC comparison of Ca with baseline methods (%)

Dataset SVM RF MAML GAN-enhanced DNN Proposed Ca

CCI 80.8± 2.5 95.0± 0.6 93.2± 3.8 94.6± 0.9 96.5± 0.7
BI 100± 0 99.8± 0.1 99.0± 0.9 99.9± 0.1 99.9± 0

Table 7 Acc comparison of Cs with baseline and advanced methods for few-shot attacks under training samples Ms (%)

Few-shot
attacks

DDoS
LOIC UDP

Bruteforce
Web

Bruteforce
XSS

SQL
Injection

DoS
HTTP

DDoS
HTTP Keylogging

Data
Exfiltration

CCI
overall

BI
overall

Ms 1470 519 195 73 520 348 30 3 - -
SVM1[4] 100.0± 0.0 34.7± 2.7 56.8± 3.5 0.7± 0.4 79.4± 0.0 4.7± 0.0 7.7± 0.0 0.0 48.1 30.6
RF1[5] 98.9± 0.0 93.2± 1.1 90.6± 1.1 60.9± 2.4 94.7± 0.6 33.9± 1.3 3.9± 0.2 0.7± 0.0 85.9 33.3

GAN-enhanced
DNN1[9] 99.8± 0.2 81.7± 0.8 90.8± 0.5 94.4± 0.9 80.8± 1.3 79.1± 4.2 97.8± 1.8 98.1± 0.5 91.7 89.0

MAML1[14] 100.0± 0.0 78.5± 0.0 85.7± 0.0 77.1± 6.0 74.2± 4.3 88.5± 4.3 75.7± 4.3 100.0± 0.0 85.3 84.6
G-IDS2[39] 100.0± 0.0 21.1± 0.6 43.2± 4.0 80.8± 5.9 76.4± 2.6 62.6± 8.2 64.4± 3.8 73.1± 2.9 61.3 69.1
DDPM2[40] 100.0± 0.0 71.5± 4.9 53.9± 9.8 48.0± 5.9 78.2± 15.1 72.6± 11.5 79.8± 5.4 85.0± 5.7 67.5 79.6
FC-Net3[20] 99.6± 0.1 73.2± 0.3 74.2± 0.4 64.3± 0.1 77.4± 1.3 86.5± 1.0 95.7± 0.2 99.2± 0.8 77.8 89.7

FSL-Capsule3[26] 100.0± 0.0 91.7± 1.4 89.6± 0.7 90.5± 5.4 81.3± 1.2 84.3± 0.5 95.8± 0.7 100.0± 0.0 93.0 90.4
SafeML4[41] 98.7± 1.3 92.6± 1.4 90.1± 0.4 56.9± 4.1 93.2± 0.8 41.4± 3.7 32.2± 8.9 10.2± 9.9 84.6 44.3

MMM-RF4[42] 100.0± 0.0 85.7± 3.2 78.3± 2.9 63.4± 4.4 77.7± 0.1 79.2± 0.8 45.7± 7.3 38.9± 11.7 81.9 60.4
GRU-GBM5[43] 63.0± 2.0 44.5± 2.3 12.4± 6.1 0.0± 0.0 59.4± 6.8 43.3± 3.7 0.0± 0.0 0.0± 0.0 30.0 25.7
CNN-LSTM5[44] 85.3± 0.3 17.4± 1.4 38.9± 8.6 11.3± 7.9 69.4± 3.3 57.7± 2.1 21.3± 5.5 0.0± 0.0 38.2 37.1

RideNN-
DNFN5[45] 94.7± 1.6 77.5± 2.1 60.7± 1.3 33.9± 8.4 74.4± 0.4 73.8± 1.5 62.7± 2.7 50.6± 13.9 66.7 65.4

DIS-IoT5[46] 99.3± 0.7 79.6± 4.9 58.1± 0.2 46.5± 3.3 69.7± 2.9 79.2± 0.5 54.8± 3.6 33.2± 12.6 70.9 59.2
Proposed Cs 100.0± 0.0 94.1± 0.3 91.4± 0.3 95.4± 0.4 78.2± 1.9 89.8± 1.8 99.4± 0.6 100.0± 0.0 95.2 91.9

1 Baseline methods.
2 Generative-based advanced methods.
3 Meta-learning-based advanced methods.
4 ML-based advanced methods.
5 DL-based advanced methods.

5.5 Results of signature-based
classification and evaluation

This part illustrates the experimental results of
the proposed Cs, whose objective is to classify
attacks into the correct label.

First, the classification results for the spe-
cific few-shot attacks compared with baseline and
advanced methods are in Table 7. Ms is the actual
training amount of these few-shot attacks, which
are used in the support set. Some interesting
observations are listed as follows:

• Cs has an average multi-classification Acc of
100% on DDoS LOIC UDP, 94.1% on Brute-
force Web, 91.4% on Bruteforce XSS, 95.4% on
SQL Injection, 78.2% on DoS HTTP, 89.8% on
DDoS HTTP, 99.4% on Keylogging and 100%
on Data Exfiltration. Overall, Cs has the high-
est averaging Acc on two datasets, which are
95.2% on CSE-CIC-IDS2018 and 91.9% on Bot-
IoT. It improves 2.2% and 1.5% Acc compared
with the second-highest method [26].

• Meta-learning-based methods also gain good
performance, including MAML, FC-Net, and
FSL-Capsule. FSL-Capsule get the second-
highest results, which are 93% and 90.4% Acc.

It shows these methods are good to cope with
the few-shot sample issue by meta-knowledge.
But there is still a gap compared with Cs due
to the usage of data augmentation.

• As a generative-based method, GAN-enhanced
DNN gets good results, which are 91.7%
and 89.0% Acc. However, the performances of
another two generative-based methods, G-IDS
and DDPM, are unsatisfactory (i.e., 61.3% ∼
79.6%). Section 1 has mentioned that the
generative-based models like GAN require suf-
ficient samples to train. Thus, the insufficient
few-shot attack training samples can cause
instability of the generative-based models, caus-
ing an equivocal effect of data augmentation.

• The ML- and DL-based methods do not per-
form very well on few-shot attack classification,
especially for Bruteforce XSS, SQL injection,
Keylogging and Data Exfiltration. Meanwhile,
RNN-based methods like GRU-GBM and CNN-
LSTM have lower Acc than other methods like
RideNN-DNFN and DIS-IoT. One reason is
that the hidden states of the recurrent struc-
tures are mainly occupied by the non-few-shot
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traffic due to its training amount, which inter-
feres with the judgment on the few-shot attacks.

To evaluate the performance of Cs on overall
datasets that contain both non-few-shot and few-
shot attacks, the results compared with advanced
methods on different parts of attack labels (i.e., all
labels, few-shot attacks, and non-few-shot attacks)
are collected in figure 6 and 7. In two figures, Cs

and almost all advanced methods possess near Acc
which varies from 82.8% to 89.9% in CSE-CIC-
IDS2018 and from 96.4% to 99.7% in Bot-IoT. It
implies that all methods have close performance
on non-few-shot attacks that have enough training
samples. However, Cs has the best average perfor-
mance on few-shot attacks in both datasets (i.e.,
95.2% and 91.9%), which makes Cs gain the high-
est Acc on overall attacks (i.e., 91.4% and 96.3%).
Thus, Cs can concentrate on the few-shot attack
classification without lowering the performance on
non-few-shot attacks.

In addition, the specific classification of each
attack type is recorded through confusion matri-
ces in figure 8 and 9. The values of horizontal
and vertical coordinates in these matrices rep-
resent the label numbers shown in Table 3. In
CSE-CIC-IDS2018, Cs performs well on almost
all labels, although it still has some shortcomings
on DDoS LOIC HTTP, FTP Bruteforce, and DoS
GoldenEye classifications. In Bot-IoT, Cs also has
excellent performance on almost all labels, while
the results on DoS/DDoS HTTP are acceptable.

5.6 Discussion

The effectiveness of few-shot generation to
assist detection. We have appended a supple-
mental experiment about the impact of different A
and Ms to Cs on the few-shot attacks. Its results
are collected at Table A.2 and A.3. Data Exfiltra-
tion is removed when Ms = 5, 10, 20 because its
amount is 3. These two tables have two findings.
One is that Cs performs better with more gener-
ated few-shot instances by G, where Cs gets the
best performance 97.3% Acc on CCI and 92.4%
Acc on BI when A = 10000 with the most train-
ing samples. One is that Cs performs better with
more original few-shot training samples. In conclu-
sion, G does generate few-shot attacks based that
can improve Cs to classify few-shot attacks. This
improvement is larger with more original training
samples or generated amount.

However, A is not recommended to be too
huge since it may lower Cs performance on non-
few-shot traffic. We also append a supplemental
experiment about the impact of different A to
Cs on both few-shot and all attack types. Its
results are collected at Table A.4. This table shows
that Cs has the highest performance on all attack
types, which are 91.4% and 96.3% Acc when A =
1000. However, this performance decreases into
89.4% and 94.3% when A = 10000. Thus, A =
1000 is more suitable to balance the classification
on few-shot attacks and all attack types.

This effectiveness is due to the missing data
of the original few-shot attacks [39]. The orig-
inal few-shot attacks have only a few samples,
whose data distribution may not be apparent to
IDS. MAGET can generate the few-shot attacks
through the rational non-functional feature mod-
ification. These generated attacks can enrich and
slightly extend its data distribution, which helps
Cs has better results and a good generalization
capability. This generalization capability is also
visualized in Section 6.

The efficiency of attack generation. We
have attached a supplemental experiment to verify
the efficiency of MAGET. As a result, the average
training time and FID of G compared with other
generative-based methods are recorded in Table
A.5 and A.6. These tables show that G in MAGET
gets the lowest FIDs, i.e., 23.0 and 4.1, with 51 and
16 seconds in both datasets among the generative-
based methods. This result indicates the instances
generated by MAGET are more stable with less
training time compared with other methods.

This efficiency is due to pre-training G with
non-few-shot attacks and fine-tuning it with few-
shot ones. The few-shot and non-few-shot attacks
share the same traffic forms and have closer
statistical characteristics than random features.
Thus, the parameters pre-trained by non-few-shot
attacks are generally closer to the final parame-
ters for few-shot attacks compared with random
parameters. As a result, fine-tuning G from these
pre-trained parameters is fast-adaptive and can
gain better generation performance than train-
ing from random parameters. This fast-adaptive
property is also visualized in Section 6.

The combination of anomaly-based and
signature-based sub-modules. We have evalu-
ated the MAGET performance of independent Ca,
Cs, and their combination. Table A.7 shows Acc
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and F1 scores, where the Multi-Stage approach
[51] is set as a reference. In two datasets, MAGET
gets 94.8% and 99.1% overall F1-scores, respec-
tively. It outperforms the Multi-Stage approach
in both sub-modules and combination, due to a

1 3 5 7 9

Predicted label

1

3

5

7

9

Tr
ue

 la
be

l

99.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00% 0.00%

0.00% 71.93% 0.00% 0.00% 0.00% 0.00% 26.73% 1.33% 0.00% 0.00%

0.00% 0.00% 98.53% 0.00% 0.00% 0.00% 1.47% 0.00% 0.00% 0.00%

0.00% 0.93% 0.00% 96.93% 0.00% 0.00% 0.13% 2.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 98.47% 0.40% 0.00% 0.00% 1.13% 0.00%

0.00% 0.00% 0.00% 0.00% 0.33% 85.53% 13.47% 0.07% 0.60% 0.00%

0.00% 0.35% 0.00% 0.15% 0.00% 0.05% 97.68% 1.43% 0.35% 0.00%

0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 6.14% 93.55% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.94% 0.06%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 99.89%

0%

20%

40%

60%

80%

Fig. 9 Confusion matrix of Cs in Bot-IoT

significant advantage in its signature-based clas-
sification sub-module (i.e., Cs). One reason is
that Multi-stage is weak at few-shot detection,
while MAGET fills this gap to improve multi-class
performance.
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Ablation study. We have appended a sup-
plemental Ablation experiment by comparing the
MAGET with other three conditions. One is with-
out the pre-training part, which degenerates into
the method of GAN-enhanced DNN. One is with-
out the auto-encoders, where Ep, Ef and Df are
removed. One is without the attack generation,
which degenerates into the method of MAML. As
a result, FID of G, TPR/FPR of Ca and Acc of
Cs on few-shot attacks are recorded in Table A.8.
On each dataset, the proposed MAGET has the
lowest FID on attack generation and the highest
Acc on signature-based few-shot attack classifica-
tion. It also has higher TPR and lower FPR on
anomaly-based classification compared with the
other conditions. Thus, by combining MAML and
GAN, MAGET does outperform these two inde-
pendent methods, whereas the structure of auto-
encoders also provides an improvement on stable
attack generation to assist few-shot classification.

5.7 Limitations

Although Cs has excellent classification perfor-
mance on most few-shot attack labels in both
datasets, including DDoS LOIC UDP, Brute-
force Web, Bruteforce XSS, SQL Injection, DDoS
HTTP, Keylogging and Data Exfiltration, Cs does
have drawbacks to classify DDoS LOIC HTTP,
FTP Bruteforce, and DoS GoldenEye in CSE-
CIC-IDS2018 and DoS HTTP in Bot-IoT. This
is because a single signature-based model rarely
achieves a perfect performance for all subcate-
gories. This can be improved by using an architec-
ture of plural models for each label or more careful
hyperparameter tuning.

Another limitation is the functional and non-
functional feature division. This division strategy
chose categorical and numerical features that are
important (i.e., differ sharply between attacks and
normal traffic) as functional features. However,
this strategy still has the possibility of miss-
ing some functional numerical features, which are
not selected by RandomForestRegressor. Domain
expertise will be applied in the future to determine
the ultimate set of functional features for newest
intrusion datasets.

6 Visualization

In this section, the fast-adaptive property and
generalization capability of MAGET are further

explained by the variation of model parameters
under two-dimensional visualization. The visual-
ization includes the training processes both in the
attack generation part and the prediction part.

6.1 Fast-adaptive property on attack
generation

The visualization of attack generation is shown in
the left part of figure 10, where γ is set as the
few-shot attack label whereas α, β, δ are attack
labels with enough training samples. In the left
sub-figure, ΦEp

,ΦG,ΦD are trained to generate
attack instances of γ. The closed shapes indicate
the suitable parameter ranges that can generate
qualified attack instances. Meanwhile, there are
local optimum traps, where Φ is almost impossi-
ble to escape and converge. The positions of these
traps vary depending on the training samples, but
all the traps are related to the samples of γ.

We illustrate a comparison between direct
training and MAGET-based methods. On the one
hand, the direct training method does not draw
support from the meta-knowledge of other labels,
and its objective is to motivate Φ to move from
“Initialized Φ′” to Φ(4) by the samples of γ. How-
ever, this method has two disadvantages. One is
that the training process is laborious and unsta-
ble due to the small set. The second is that Φ is
easy to fall into the local optimal trap, so it is dif-
ficult to reach Φ(4) or its closed shape. Based on
the samples of α, β, δ, the MAGET-based method
utilizes Algorithm 1 as the meta-training process
to find the optimized initial model parameters. As
a result, the locations of Φ(1),Φ(2),Φ(3) are calcu-
lated and their central point Φ′ is selected. Since
the samples of γ are not applied. This process is
not affected by the γ local optimum trap, because
it does not apply the samples of γ. Instead, the
process may face α, β, δ traps, but even if Φ falls
into the trap of one attack type, it still has the
ability to jump out of the traps of the other
two attack types. It only falls into the traps that
α, β, δ have simultaneously, but this rarely hap-
pens. Then, Algorithm 2 is applied to motivate
Φ to move from Φ′ to Φ(4). Although γ has few
samples, the training task is acceptable because
the movement is obviously shorter than the direct
training method. As a result, a few-shot fast-
adaptive process is achieved. This process is less
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Fig. 10 Two-dimensional Φ visualization in training MAGET. The left part shows the variation of ΦEp ,ΦG,ΦD within
the attack generation part, whereas the right one depicts the variation of ΦEf

,ΦDf
,ΦCa ,ΦCs within the prediction part.

likely to meet the local optimum traps. For exam-
ple, direct training faces four traps of γ, while
MAGET faces only one.

6.2 Generalization capability on prediction

In the right part of figure 10, ΦEf
,ΦDf

,ΦCa
,ΦCs

are trained to infer incoming traffic, including
few-shot attack γ. The closed shapes refer to
the parameter range of Φ that enables anomaly-
based detection or signature-based classification.
The purple closed shape enables models to
detect meta-knowledge (i.e.., α, β, δ) whereas the
cerulean one concentrates on γ. In the overlap
range, Φ can predict all four attack types correctly.
Therefore, the objective of the prediction part is
to move Φ into this overlap.

We compare MAML and MAGET-based
methods. First, both methods search for the opti-
mized initial model parameters Φ′ based on the
samples of α, β, δ through Algorithm 3. After that,
Algorithm 4 is applied to fine-tune the models
based on the samples of γ.

In the MAML way, the training samples of γ
are sparse and may only reflect a partial data dis-
tribution of γ. The fine-tuning step in this way
moves Φ′ to Φ∆, which is not optimal for reflect-
ing the real detection range (i.e., the cerulean one

in the figure). As a result, the trained models uti-
lize the decision boundaries with a sample-based
prejudice to classify attack γ. In other words, the
generalization capability of these models on the
test set is relatively low.

In the MAGET-based way, samples of γ are
extended with instances generated by G. These
generated samples have the same functional fea-
tures as the original ones, whereas the non-
functional features are different due to Algorithms
1 and 2. These two algorithms search for a more
extensive data distribution to generate these non-
functional features (The rationality of this distri-
bution is guaranteed by FID values). Based on the
extended samples from this data distribution, the
fine-tuning step is able to move Φ′ into Φ∗ that
is better than Φ∆ in the cerulean detection range.
As a consequence, this way enables models to have
better generalization capabilities.

7 Conclusion and Future Works

In this paper, a Model-Agnostic Generation-
Enhanced Technology (MAGET) for few-shot
intrusion detection is proposed based on GAN
and MAML. It performs few-shot intrusion detec-
tion by expanding the samples of few-shot attacks.
Based on four learning algorithms, MAGET first
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transfers meta-knowledge from non-few-shot sam-
ples to the model that generates few-shot attacks
and then identifies intrusions by using a hybrid
detection mechanism. The experiments on CSE-
CIC-IDS2018 and Bot-IoT datasets show that
MAGET possesses 94.3%/1.8% TPR/FPR and
99.8%/0.1% TPR/FPR in anomaly-based clas-
sification and 95.2% and 91.9% accuracy in
signature-based classification, respectively. Com-
pared with other related methods, MAGET
improves the accuracy of identifying few-shot
attacks on these two datasets by at least 2.2%
and 1.5%, respectively. Through the analysis of
the model parameter visualization process, the
models in MAGET are more likely to obtain the
global optimum and have better generalization
ability than direct training or the original MAML
way. In the future, we will implement a real-time
testbed with a simulated micro-service topology
to analyze traffic from specific applications. Fur-
thermore, we will consider a feature extractor
that includes traffic segmentation and sequential
embedding to extract network traffic based on the
payload and sequential features hidden in adjacent
traffic packets.
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Bekiroglu, and Saumendra Sengupta. Hybrid
intrusion detection system using machine
learning techniques in cloud computing envi-
ronments. In 2019 IEEE 17th Interna-
tional Conference on Software Engineer-
ing Research, Management and Applications
(SERA), pages 84–89, 2019.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Ben-
gio. Generative adversarial nets. Advances
in neural information processing systems, 27,
2014.

[20] Congyuan Xu, Jizhong Shen, and Xin Du.
A method of few-shot network intrusion
detection based on meta-learning framework.
IEEE Transactions on Information Forensics
and Security, 15:3540–3552, 2020.

[21] Wei Liang, Yiyong Hu, Xiaokang Zhou,
Yi Pan, I Kevin, and Kai Wang. Variational
few-shot learning for microservice-oriented
intrusion detection in distributed industrial
iot. IEEE Transactions on Industrial Infor-
matics, 18(8):5087–5095, 2021.

[22] Iman Sharafaldin, Arash Habibi Lashkari,
and Ali A Ghorbani. Toward generating a
new intrusion detection dataset and intrusion
traffic characterization. ICISSp, 1:108–116,
2018.

[23] Nsl-kdd dataset. http://nsl.cs.unb.ca/
NSL-KDD/.

[24] Yingwei Yu and Naizheng Bian. An intrusion
detection method using few-shot learning.
IEEE Access, 8:49730–49740, 2020.

[25] Jingcheng Yang, Hongwei Li, Shuo Shao,
Futai Zou, and Yue Wu. Fs-ids: A framework
for intrusion detection based on few-shot
learning. Computers & Security, 122:102899,
2022.

[26] Zu-Min Wang, Ji-Yu Tian, Jing Qin, Hui
Fang, and Li-Ming Chen. A few-shot
learning-based siamese capsule network for

21

http://nsl.cs.unb.ca/NSL-KDD/
http://nsl.cs.unb.ca/NSL-KDD/


intrusion detection with imbalanced train-
ing data. Computational intelligence and
neuroscience, 2021, 2021.

[27] Tao Wu, Honghui Fan, Hongjin Zhu, Con-
gzhe You, Hongyan Zhou, and Xianzhen
Huang. Intrusion detection system combined
enhanced random forest with smote algo-
rithm. EURASIP Journal on Advances in
Signal Processing, 2022(1):1–20, 2022.

[28] Shuokang Huang and Kai Lei. Igan-ids: An
imbalanced generative adversarial network
towards intrusion detection system in ad-
hoc networks. Ad Hoc Networks, 105:102177,
2020.

[29] Aniwat Phaphuangwittayakul, Yi Guo, and
Fangli Ying. Fast adaptive meta-learning for
few-shot image generation. IEEE Transac-
tions on Multimedia, 24:2205–2217, 2022.

[30] Aimin Yang, Chaomeng Lu, Jie Li, Xiang-
dong Huang, Tianhao Ji, Xichang Li, and
Yichao Sheng. Application of meta-learning
in cyberspace security: A survey. Digital
Communications and Networks, 2022.

[31] Muhammad Usama, Muhammad Asim, Sid-
dique Latif, Junaid Qadir, and Ala-Al-
Fuqaha. Generative adversarial networks for
launching and thwarting adversarial attacks
on network intrusion detection systems. 2019
15th International Wireless Communications
and Mobile Computing Conference, IWCMC
2019, pages 78–83, 2019.

[32] Miao Xie, Bingli Liu, Lu Wang, Cheng Li,
Yunhui Kong, and Rui Tang. Auto encoder
generative adversarial networks-based min-
eral prospectivity mapping in lhasa area,
tibet. Journal of Geochemical Exploration,
255:107326, 2023.

[33] Canadian Institute for Cybersecurity. Cse-
cic-ids2018 on aws. https://www.unb.ca/cic/
datasets/ids-2018.html.

[34] Nickolaos Koroniotis, Nour Moustafa, Elena
Sitnikova, and Benjamin Turnbull. Towards
the development of realistic botnet dataset
in the internet of things for network forensic

analytics: Bot-iot dataset. Future Generation
Computer Systems, 100:779–796, 2019.

[35] Basheer Husham Ali, Nasri Sulaiman,
SAR Al-Haddad, Rodziah Atan, and Siti
Lailatul Mohd Hassan. Ddos detection using
active and idle features of revised cicflowme-
ter and statistical approaches. In 2022
4th International Conference on Advanced
Science and Engineering (ICOASE), pages
148–153. IEEE, 2022.

[36] Node-red tool. https://nodered.org/.

[37] Argus tool. https://qosient.com/argus/
index.shtml.

[38] Agus Eko Minarno, Laofin Aripa, Yufis
Azhar, and Yuda Munarko. Classification
of malaria cell image using inception-v3
architecture. JOIV: International Journal
on Informatics Visualization, 7(2):273–278,
2023.

[39] Md Hasan Shahriar, Nur Imtiazul Haque,
Mohammad Ashiqur Rahman, and Miguel
Alonso. G-ids: Generative adversarial net-
works assisted intrusion detection system. In
2020 IEEE 44th Annual Computers, Soft-
ware, and Applications Conference (COMP-
SAC), pages 376–385. IEEE, 2020.

[40] Bin Tang, Yan Lu, Qi Li, Yueying Bai, Jie
Yu, and Xu Yu. A diffusion model based
on network intrusion detection method for
industrial cyber-physical systems. Sensors,
23(3):1141, 2023.

[41] Koorosh Aslansefat, Ioannis Sorokos, Declan
Whiting, Ramin Tavakoli Kolagari, and Yian-
nis Papadopoulos. Safeml: safety monitor-
ing of machine learning classifiers through
statistical difference measures. In Interna-
tional Symposium on Model-Based Safety and
Assessment, pages 197–211. Springer, 2020.

[42] Mohamed Hammad, Nabil Hewahi, and Wael
Elmedany. Mmm-rf: A novel high accu-
racy multinomial mixture model for network
intrusion detection systems. Computers &
Security, 120:102777, 2022.

22

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://nodered.org/
https://qosient.com/argus/index.shtml
https://qosient.com/argus/index.shtml


[43] Alper Sarıkaya, Banu Günel Kılıç, and
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Appendix

TABLE A.1 Top five important features selected by RandomForestRegressor in each attack type

Attack type Top five feature Weight Attack type Top five feature Weight Attack type Top five feature Weight

Bot
(CCI)

Flow Pkts/s 0.1029

DDoS
LOIC HTTP

(CCI)

Fwd Pkt Len Max 0.1153

FTP
Bruteforce

(CCI)

Fwd Seg Size Min 0.1286
Fwd Pkts/s 0.0889 Fwd Seg Size Avg 0.1013 Bwd Pkts/s 0.1081

Pkt Size Avg 0.0866 Fwd Pkt Len Mean 0.0991 Flow Pkts/s 0.0948
Init Fwd Win Byts 0.0683 Flow Pkts/s 0.0898 Fwd Pkts/s 0.0851
Bwd Seg Size Avg 0.0670 Fwd Pkts/s 0.0740 Init Fwd Win Byts 0.0765

SSH
Bruteforce

(CCI)

Fwd Seg Size Min 0.1809
DoS

GoldenEye
(CCI)

Fwd Seg Size Min 0.2064

DoS
Slowloris

(CCI)

Fwd Seg Size Min 0.1406
Init Bwd Win Byts 0.1260 Fwd Header Len 0.0854 Bwd Pkt Len Mean 0.0562

Bwd Pkts/s 0.0883 Init Fwd Win Byts 0.0633 Bwd Seg Size Avg 0.0559
Bwd Header Len 0.0680 Flow Pkts/s 0.0555 Bwd Pkt Len Max 0.0545

Fwd Pkts/s 0.0600 Fwd Pkts/s 0.0503 Flow IAT Std 0.0467

DoS
Hulk
(CCI)

Fwd Seg Size Min 0.1510

DoS
SlowHTTPTest

(CCI)

Fwd Seg Size Min 0.1291

DDoS
HOIC
(CCI)

Init Fwd Win Byts 0.2271
Fwd Header Len 0.0619 Bwd Pkts/s 0.1069 Fwd Header Len 0.0880

Subflow Bwd Pkts 0.0584 Flow Pkts/s 0.0923 Fwd Pkts/s 0.0772
Tot Bwd Pkts 0.0570 Fwd Pkts/s 0.0837 Flow Pkts/s 0.0703

Bwd Header Len 0.0496 Init Fwd Win Byts 0.0770 Tot Fwd Pkts 0.0662

Infiltration
(CCI)

Pkt Len Std 0.0780

DDoS
LOIC UDP

(CCI)

Fwd Act Data Pkts 0.1191

Bruteforce
Web

(CCI)

Init Fwd Win Byts 0.1796
Init Fwd Win Byts 0.0494 TotLen Fwd Pkts 0.1150 Fwd Seg Size Avg 0.0723

Flow Pkts/s 0.0442 Subflow Fwd Byts 0.1121 Fwd Pkt Len Mean 0.0698
Fwd Pkt Len Std 0.0413 Fwd Header Len 0.1056 TotLen Fwd Pkts 0.0451

Fwd Pkts/s 0.0404 Subflow Fwd Pkts 0.1051 Subflow Fwd Byts 0.0445

Bruteforce
XSS

(CCI)

Init Fwd Win Byts 0.1832
SQL

Injection
(CCI)

Init Fwd Win Byts 0.1618

DoS
TCP
(BI)

ltime 0.1763
Flow Pkts/s 0.0526 Flow Pkts/s 0.0868 N IN Conn P DstIP 0.1566
Fwd Pkts/s 0.0519 Fwd Pkts/s 0.0838 N IN Conn P SrcIP 0.1274

Fwd Header Len 0.0513 Pkt Len Max 0.0810 Pkts P State P Protocol P DestIP 0.0962
Subflow Fwd Pkts 0.0472 Bwd Pkt Len Std 0.0784 TnBPDstIP 0.0748

DoS
UDP
(BI)

ltime 0.1721

DDoS
TCP
(BI)

ltime 0.1892

DDoS
UDP
(BI)

N IN Conn P DstIP 0.1647
stddev 0.1461 N IN Conn P DstIP 0.1631 ltime 0.1615

N IN Conn P SrcIP 0.1152 TnP PDstIP 0.1159 sum 0.0957
N IN Conn P DstIP 0.1148 TnBPDstIP 0.1006 Pkts P State P Protocol P DestIP 0.0939

sum 0.0790 TnP Per Dport 0.0919 mean 0.0885

Service
Scan
(BI)

ltime 0.2481
OS

Fingerprint
(BI)

ltime 0.2566

DoS
HTTP
(BI)

ltime 0.1986
TnP PerProto 0.1679 N IN Conn P DstIP 0.1596 drate 0.1269
TnP Per Dport 0.1133 TnP PDstIP 0.1137 TnP Per Dport 0.1137

dur 0.0822 TnP PerProto 0.1082 Pkts P State P Protocol P DestIP 0.1021
N IN Conn P DstIP 0.0600 TnBPDstIP 0.0907 TnP PDstIP 0.0684

DDoS
HTTP
(BI)

N IN Conn P DstIP 0.1742

Keylogging
(BI)

ltime 0.2280

Data
Exfiltration

(BI)

ltime 0.2358
ltime 0.1709 AR P Proto P Dport 0.1307 drate 0.0746
drate 0.1032 AR P Proto P Sport 0.1103 TnP PerProto 0.0574

TnP PDstIP 0.0917 N IN Conn P DstIP 0.0987 N IN Conn P DstIP 0.0540
TnBPDstIP 0.0717 AR P Proto P SrcIP 0.0806 sbytes 0.0442
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Fig. A.1 Training losses variation with batches: (a), (b), (c), (d) is based on CSE-CIC-IDS2018 while (e), (f), (g), (h) is
based on Bot-IoT; the curves in (a), (e), (b), (f) refer to losses of Ep, G,Dis in Algorithm 1 and 2, respectively; the curves
in (c), (g), (d), (h) refer to losses of Ef/Df , Ca, Cs in Algorithm 3 and 4, respectively
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TABLE A.2 Acc comparison on signature-based
classification for few-shot attacks in CCI under different
Ms and A (%)

Training samples
Generated amount A

0 10 100 1000 10000
Ms = 5 73.2 77.4 80.7 90.1 92.5
Ms = 10 75.5 78.1 81.8 91.6 93.6
Ms = 20 78.3 80.2 83.5 93.4 95.6

Ms in Table 4 81.7 83.2 86.7 95.2 97.3

TABLE A.3 Acc comparison on signature-based
classification for few-shot attacks in BI under different Ms

and A (%)

Training samples
Generated amount A

0 10 100 1000 10000
Ms = 5 71.6 73.8 77.2 83.6 85.4
Ms = 10 77.4 77.2 77.9 88.7 82.7
Ms = 20 79.5 79.1 80.0 86.1 89.1

Ms in Table 4 76.9 82.8 83.8 91.9 92.4

TABLE A.4 Acc comparison on signature-based
classification for few-shot and all attacks under different
A (%)

Target
Generated amount A

0 10 100 1000 10000
Few-shot (CCI) 81.7 83.2 86.7 95.2 97.3

All (CCI) 82.6 83.3 85.1 91.4 89.4
Few-shot (BI) 76.9 82.8 83.8 91.9 92.4

All (BI) 90.9 93.1 93.9 96.3 94.3

TABLE A.5 Average training time and FID comparison
on attack generation with generative-based methods in CCI

Method Time (s) FID(↓) Epoch

GAN-enhanced DNN[9]
82 42.5 50
172 31.3 100

G-IDS[39]
87 110.5 50
124 64.3 100

DDPM[40]
62 267.3 50
128 237.3 100

G in MAGET 51 23.0 50

TABLE A.6 Average training time and FID comparison
on attack generation with generative-based methods in BI

Method Time (s) FID(↓) Epoch

GAN-enhanced DNN[9]
23.6 28.8 50
56.4 20.3 100

G-IDS[39]
19.7 53.5 50
42.8 35.8 100

DDPM[40]
67 159.5 50
137 140.5 100

G in MAGET 16 4.1 50

TABLE A.7 Comparison on sub-modules and combined
one with an advanced method in CCI and BI (%)

Method sub-module Acc F1-Score
Multi-Stage[51] Anomaly* 96.5/99.3 96.5/99.3

MAGET Ca 96.8/99.4 97.0/99.6
Multi-Stage[51] Multi-class 88.4/90.1 86.5/89.2

MAGET Cs 91.4/96.3 92.2/96.1
Multi-Stage[51] combined 91.8/96.7 90.2/94.9

MAGET combined 95.1/98.9 94.8/99.1
* The anomaly detection stage uses an extension stage to
support its benign traffic filtering.

TABLE A.8 Ablation experiment of MAGET on CCI and BI

Method FID TPR (%) FPR (%) Acc (%)
No pre-training 31.3/20.3 95.6/99.7 3.6/0.1 91.7/89.0
No auto-encoders 45.4/33.7 91.8/99.6 2.1/0.3 90.5/88.8
No generation - 89.3/99.8 0.6/0.1 85.3/84.6

MAGET 23.0/4.1 94.3/99.8 1.8/0.1 95.2/91.9
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Fig. A.2 FID variations of the generative attack instances
with epochs: (a), (b) is based on CSE-CIC-IDS2018 while
(c), (d) is based on Bot-IoT; (a), (c) are for Algorithm 1
and (b), (d) are for Algorithm 2
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Fig. A.3 ROC curves on anomaly-based classification
with baseline methods

25


	Introduction
	Background and Related Works
	Background of intrusion detection
	Background of MAML and GAN
	Related works of few-shot attack classification

	Proposed method
	Threat Model
	System design

	MAGET training progress and workflow
	Generation parameter search algorithm
	Attack generation algorithm
	Prediction parameter search algorithm
	Prediction fine-tuning algorithm

	Experiments
	Experimental setup
	Pre-processing steps
	Training process
	Results of anomaly-based classification and evaluation
	Results of signature-based classification and evaluation
	Discussion
	Limitations

	Visualization
	Fast-adaptive property on attack generation
	Generalization capability on prediction

	Conclusion and Future Works
	

